欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>模擬技術(shù)>針對所產(chǎn)生的SiC功率元器件中浪涌的對策

針對所產(chǎn)生的SiC功率元器件中浪涌的對策

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

評論

查看更多

相關(guān)推薦

SiC功率器件和模塊!

在很寬的范圍內(nèi)實(shí)現(xiàn)對器件制造所需的p型和n型的控制。因此,SiC被認(rèn)為是有望超越硅極限的功率器件材料。SiC具有多種多型(晶體多晶型),并且每種多型顯示不同的物理特性。對于功率器件,4H-SiC被認(rèn)為是理想的,其單晶4英寸到6英寸之間的晶圓目前已量產(chǎn)。
2022-11-22 09:59:261373

SiC MOSFET的器件演變與技術(shù)優(yōu)勢

一樣,商用SiC功率器件的發(fā)展走過了一條喧囂的道路。本文旨在將SiC MOSFET的發(fā)展置于背景,并且 - 以及器件技術(shù)進(jìn)步的簡要?dú)v史 - 展示其技術(shù)優(yōu)勢及其未來的商業(yè)前景?! √蓟杌蛱蓟璧臍v史
2023-02-27 13:48:12

SiC MOSFET:經(jīng)濟(jì)高效且可靠的高功率解決方案

家公司已經(jīng)建立了SiC技術(shù)作為其功率器件生產(chǎn)的基礎(chǔ)。此外,幾家領(lǐng)先的功率模塊和功率逆變器制造商已為其未來基于SiC的產(chǎn)品的路線圖奠定了基礎(chǔ)。碳化硅(SiC)MOSFET即將取代硅功率開關(guān);性能和可靠性
2019-07-30 15:15:17

SiC SBD的器件結(jié)構(gòu)和特征

二極管(FRD:快速恢復(fù)二極管),能夠明顯減少恢復(fù)損耗。有利于電源的高效率化,并且通過高頻驅(qū)動實(shí)現(xiàn)電感等無源器件的小型化,而且可以降噪。 廣泛應(yīng)用于空調(diào)、電源、光伏發(fā)電系統(tǒng)功率調(diào)節(jié)器、電動汽車
2019-03-14 06:20:14

SiC-MOSFET器件結(jié)構(gòu)和特征

通過電導(dǎo)率調(diào)制,向漂移層內(nèi)注入作為少數(shù)載流子的空穴,因此導(dǎo)通電阻比MOSFET還要小,但是同時(shí)由于少數(shù)載流子的積聚,在Turn-off時(shí)會產(chǎn)生尾電流,從而造成極大的開關(guān)損耗?! ?b class="flag-6" style="color: red">SiC器件漂移層的阻抗
2023-02-07 16:40:49

SiC-MOSFET與Si-MOSFET的區(qū)別

。如果是相同設(shè)計(jì),則與芯片尺寸成反比,芯片越小柵極電阻越高。同等能力下,SiC-MOSFET的芯片尺寸比Si元器件的小,因此柵極電容小,但內(nèi)部柵極電阻增大。例如,1200V 80mΩ產(chǎn)品(S2301為裸芯片
2018-11-30 11:34:24

SiC-MOSFET的可靠性

本文就SiC-MOSFET的可靠性進(jìn)行說明。這里使用的僅僅是ROHM的SiC-MOSFET產(chǎn)品相關(guān)的信息和數(shù)據(jù)。另外,包括MOSFET在內(nèi)的SiC功率元器件的開發(fā)與發(fā)展日新月異,如果有不明之處或希望
2018-11-30 11:30:41

SiC-MOSFET的應(yīng)用實(shí)例

SiC-MOSFET的有效性。所謂SiC-MOSFET-溝槽結(jié)構(gòu)SiC-MOSFET與實(shí)際產(chǎn)品所謂SiC-MOSFET-SiC-MOSFET的可靠性SiC功率元器件基礎(chǔ)篇前言前言何謂SiC(碳化硅)?何謂碳化硅SiC
2018-11-27 16:38:39

SiC-SBD關(guān)于可靠性試驗(yàn)

進(jìn)行半導(dǎo)體元器件的評估時(shí),電氣/機(jī)械方面的規(guī)格和性能當(dāng)然是首先要考慮的,而可靠性也是非常重要的因素。尤其是功率元器件是以處理較大功率為前提的,更需要具備充分的可靠性。SiC-SBD的可靠性SiC作為
2018-11-30 11:50:49

SiC功率元器件的開發(fā)背景和優(yōu)點(diǎn)

前面對SiC的物理特性和SiC功率元器件的特征進(jìn)行了介紹。SiC功率元器件具有優(yōu)于Si功率元器件的更高耐壓、更低導(dǎo)通電阻、可更高速工作,且可在更高溫條件下工作。接下來將針對SiC的開發(fā)背景和具體優(yōu)點(diǎn)
2018-11-29 14:35:23

SiC功率器件SiC-MOSFET的特點(diǎn)

電導(dǎo)率調(diào)制,向漂移層內(nèi)注入作為少數(shù)載流子的空穴,因此導(dǎo)通電阻比MOSFET還要小,但是同時(shí)由于少數(shù)載流子的積聚,在Turn-off時(shí)會產(chǎn)生尾電流,從而造成極大的開關(guān)損耗。SiC器件漂移層的阻抗比Si器件
2019-05-07 06:21:55

SiC功率器件概述

)工作頻率的高頻化,使周邊器件小型化(例:電抗器或電容等的小型化)主要應(yīng)用于工業(yè)機(jī)器的電源或光伏發(fā)電的功率調(diào)節(jié)器等。2. 電路構(gòu)成現(xiàn)在量產(chǎn)中的SiC功率模塊是一種以一個(gè)模塊構(gòu)成半橋電路的2in1類型
2019-05-06 09:15:52

SiC功率器件概述

,所以被認(rèn)為是一種超越Si極限的功率器件材料。SiC存在各種多型體(結(jié)晶多系),它們的物性值也各不相同。用于功率器件制作,4H-SiC最為合適
2019-07-23 04:20:21

SiC功率器件的封裝技術(shù)研究

  具有成本效益的大功率高溫半導(dǎo)體器件是應(yīng)用于微電子技術(shù)的基本元件。SiC是寬帶隙半導(dǎo)體材料,與Si相比,它在應(yīng)用具有諸多優(yōu)勢。由于具有較寬的帶隙,SiC器件的工作溫度可高達(dá)600℃,而Si器件
2018-09-11 16:12:04

SiC器件與硅器件相比有哪些優(yōu)越的性能?

與硅相比,SiC有哪些優(yōu)勢?SiC器件與硅器件相比有哪些優(yōu)越的性能?碳化硅器件的缺點(diǎn)有哪些?
2021-07-12 08:07:35

SiC寬帶功率放大器有什么設(shè)計(jì)方法?

隨著現(xiàn)代技術(shù)的發(fā)展, 功率放大器已成為無線通信系統(tǒng)中一個(gè)不可或缺的部分, 特別是寬帶大功率產(chǎn)生技術(shù)已成為現(xiàn)代通信對抗的關(guān)鍵技術(shù)。作為第三代半導(dǎo)體材料碳化硅( SiC) , 具有寬禁帶、高熱導(dǎo)率、高
2019-08-12 06:59:10

SiC肖特基勢壘二極管更新?lián)Q代步履不停

ROHM擅長的低VF特性,還提高了抗浪涌電流性能IFSM,并改善了漏電流IR特性,采用SiC功率元器件的客戶有望進(jìn)一步增加。(未完待續(xù))
2018-12-03 15:12:02

功率元器件

有些人的印象是使用在大功率的特殊應(yīng)用上的,但是實(shí)際上,它卻是在我們身邊的應(yīng)用對節(jié)能和小型化貢獻(xiàn)巨大的功率元器件SiC功率元器件關(guān)于SiC功率元器件,將分以下4部分進(jìn)行講解。何謂SiC?物理特性
2018-11-29 14:39:47

EMC對策元器件的選擇方法及噪聲對策

線通信終端,終端噪音使得它自身的通信性能劣化,會發(fā)生系統(tǒng)內(nèi)的EMC問題(即自中毒問題),為了使LTE的性能發(fā)揮極致,必須解決掉這一問題。本文中我們將通過噪聲對策的事例,介紹對LTE通信規(guī)范產(chǎn)生影響的噪音對策以及必要的EMC對策元器件的選擇方法。
2019-05-31 06:10:32

EMC對策的容感器件選擇方法

的磁珠.5.共模電感的介紹,針對新型高速差分接口USB3.0,HDMI1.3等等,介紹新型的共模電感來濾除共模噪音。 EMC對策的容感器件選擇方法[此貼子已經(jīng)被admin于2010-12-5 10:06:18編輯過]
2010-08-31 20:26:16

EMI對策

的噪聲對策。噪聲的產(chǎn)生也和PCB板布局、元器件配置、元器件性能等有關(guān)系。在某些情況下,可能需要將LC濾波器由簡單的L型升級為π型或T型,或在電路板上設(shè)置屏蔽等。此外,某些設(shè)備規(guī)格還必須符合噪聲標(biāo)準(zhǔn)(比如
2018-11-30 11:39:37

GaN和SiC區(qū)別

額定擊穿電壓器件的半導(dǎo)體材料方面勝過Si.Si在600V和1200V額定功率SiC肖特基二極管已經(jīng)上市,被公認(rèn)為是提高功率轉(zhuǎn)換器效率的最佳解決方案。 SiC的設(shè)計(jì)障礙是低水平寄生效應(yīng),如果內(nèi)部和外部
2022-08-12 09:42:07

HEV/EV用電子元器件的設(shè)計(jì)對策

HEV/EV 用電子元器件的設(shè)計(jì)對策 議程1. HEV/EV Category and Passive Component混合/純電動車種類和被動電子元器件2. DC/DC Converter-
2009-11-26 11:45:54

ROHM功率元器件助力物聯(lián)網(wǎng)和工業(yè)設(shè)備

全球知名半導(dǎo)體制造商ROHM在慕尼黑上海電子展上展出了ROHM擅長的模擬電源、以業(yè)界領(lǐng)先的SiC(碳化硅)元器件為首的功率元器件、種類繁多的汽車電子產(chǎn)品、以及能夠?yàn)镮oT(物聯(lián)網(wǎng))的發(fā)展做出貢獻(xiàn)
2019-04-12 05:03:38

ROHM最新功率元器件產(chǎn)品介紹

實(shí)現(xiàn)了具有硅半導(dǎo)體無法得到的突破性特性的碳化硅半導(dǎo)體(SiC半導(dǎo)體)的量產(chǎn)。另外,在傳統(tǒng)的硅半導(dǎo)體功率元器件領(lǐng)域,實(shí)現(xiàn)了從分立式半導(dǎo)體到IC全覆蓋的融合了ROHM綜合實(shí)力的復(fù)合型產(chǎn)品群。下面介紹這些產(chǎn)品的一部分。
2019-07-08 08:06:01

ROHM的SiC MOSFET和SiC SBD成功應(yīng)用于Apex Microtechnology的工業(yè)設(shè)備功率模塊系列

標(biāo)準(zhǔn)的產(chǎn)品,并與具有高技術(shù)標(biāo)準(zhǔn)和高品質(zhì)要求的供應(yīng)商合作。在這過程,ROHM作為ApexMicrotechnology的SiC功率元器件供應(yīng)商脫穎而出。ROHM的服務(wù)和技術(shù)支持都非常出色,使得我們能夠
2023-03-29 15:06:13

ROHM的SiC SBD成功應(yīng)用于村田制作集團(tuán)旗下企業(yè) Murata Power Solutions的數(shù)據(jù)中心電源模塊

色,VF值更低。<支持信息>ROHM在官網(wǎng)特設(shè)網(wǎng)頁,介紹了SiC MOSFET、SiC SBD和SiC功率模塊等SiC功率元器件的概況,同時(shí),還發(fā)布了用于快速評估和引入第4代SiC MOSFET的各種支持
2023-03-02 14:24:46

Si功率元器件前言

擁有的特性和特征的應(yīng)用事例。均分別包含基礎(chǔ)內(nèi)容。如果是幾十瓦的電源,有內(nèi)置功率元器件,可減少個(gè)別地選擇MOSFET或工作確認(rèn)。然而,在大功率電路,切實(shí)地純熟掌握分立元器件極為重要。后文將詳細(xì)
2018-11-28 14:34:33

功率元器件”的發(fā)展與“電源IC技術(shù)”的變革

確實(shí)無法在21世紀(jì)單芯片化。羅姆積極致力于走在22世紀(jì)前端的一體化封裝電源的開發(fā),敬請期待未來羅姆具有前瞻性的的產(chǎn)品陣容?! 《诹_姆提出的四大發(fā)展戰(zhàn)略,其中之一便是“強(qiáng)化以SiC為核心的功率元器件
2018-09-26 09:44:59

【直播邀請】羅姆 SiC(碳化硅)功率器件的活用

本帖最后由 chxiangdan 于 2018-7-27 17:22 編輯 親愛的電子發(fā)燒友小伙伴們!羅姆作為 SiC 功率元器件的領(lǐng)先企業(yè),自上世紀(jì) 90 年代起便著手于 SiC 功率元器件
2018-07-27 17:20:31

【羅姆SiC-MOSFET 試用體驗(yàn)連載】SiC MOSFET元器件性能研究

項(xiàng)目名稱:SiC MOSFET元器件性能研究試用計(jì)劃:申請理由本人在半導(dǎo)體失效分析領(lǐng)域有多年工作經(jīng)驗(yàn),熟悉MOSET各種性能和應(yīng)用,掌握各種MOSFET的應(yīng)用和失效分析方法,熟悉MOSFET的主要
2020-04-24 18:09:12

為什么我們需要針對HDMI設(shè)計(jì)高浪涌保護(hù)?

的時(shí)間往往很短,但劇烈的脈沖產(chǎn)生的能量往往會對系統(tǒng)產(chǎn)生極大的沖擊。針對HDMI接口,高浪涌形成的原因有很多,但最主要的因素來自于較長的HDMI線纜,以及閃電。這些因素產(chǎn)生的能量一般會比靜電產(chǎn)生的要
2022-11-09 07:07:05

什么是基于SiC和GaN的功率半導(dǎo)體器件?

SiC)和氮化鎵(GaN)是功率半導(dǎo)體生產(chǎn)中采用的主要半導(dǎo)體材料。與硅相比,兩種材料中較低的本征載流子濃度有助于降低漏電流,從而可以提高半導(dǎo)體工作溫度。此外,SiC 的導(dǎo)熱性和 GaN 器件穩(wěn)定的導(dǎo)通電
2023-02-21 16:01:16

使用SiC-SBD的優(yōu)勢

的原因,反向電流小,因此噪聲小,???可減少噪聲/浪涌對策元器件,實(shí)現(xiàn)小型化??3.高頻工作,可實(shí)現(xiàn)電感等外圍元器件的小型化以下是具體案例和示意圖。由于其溫度穩(wěn)定性非常優(yōu)異等優(yōu)勢,還支持車載級
2018-11-29 14:33:47

SiC功率模塊介紹

從本文開始進(jìn)入新的一章。繼SiC概要、SiC-SBD(肖特基勢壘二極管 )、SiC-MOSFET之后,來介紹一下完全由SiC功率元器件組成的“全SiC功率模塊”。本文作為第一篇,想讓大家了解全SiC
2018-11-27 16:38:04

SiC功率模塊使逆變器重量減少6kg、尺寸減少43%

%的小型化與4kg的輕量化,與未使用SiC功率元器件的第2賽季逆變器相比,實(shí)現(xiàn)了43%的小型化和6kg的輕量化。此次文圖瑞Formula E車隊(duì)賽車逆變器搭載的全SiC功率模塊,采用了ROHM獨(dú)有
2018-12-04 10:24:29

SiC功率模塊的開關(guān)損耗

了約22%。橙色部分表示開關(guān)損耗,降低的損耗大部分是開關(guān)損耗。在30kHz條件下,首先是IGBT的開關(guān)損耗大幅增加。眾所周知,這是IGBT高速開關(guān)面對的課題。全SiC功率模塊的開關(guān)損耗雖然也有
2018-11-27 16:37:30

SiC模塊應(yīng)用要點(diǎn)之緩沖電容器

關(guān)斷時(shí)(切斷電流)產(chǎn)生較大的浪涌,當(dāng)浪涌超過元器件的額定值時(shí),甚至可能會致使產(chǎn)品損壞。要有效降低布線電感值,需要靠近電路圖的紅色橢圓圈出來的線路的元件引腳連接電容器。緩沖用電容器示例緩沖用電容器不僅電氣
2018-11-27 16:39:33

SiC模塊柵極誤導(dǎo)通的處理方法

和CN4的+18V、CN3和CN6的-3V為驅(qū)動器的電源。電路增加了CGS和米勒鉗位MOSFET,使包括柵極電阻在內(nèi)均可調(diào)整。將該柵極驅(qū)動器與全SiC功率模塊的柵極和源極連接,來確認(rèn)柵極電壓的升高情況
2018-11-27 16:41:26

功率二極管損耗最小的SiC-SBD

SiC-SBD的特征,下面將介紹一些其典型應(yīng)用。主要是在電源系統(tǒng)應(yīng)用,將成為代替以往的Si二極管,解決當(dāng)今的重要課題——系統(tǒng)效率提高與小型化的關(guān)鍵元器件之一。<應(yīng)用例>PFC(功率因數(shù)改善)電路電機(jī)驅(qū)動器電路
2018-12-04 10:26:52

對LTE通信規(guī)范產(chǎn)生影響的噪音對策有哪些?

對LTE通信規(guī)范產(chǎn)生影響的噪音對策以及必要的EMC對策元器件的選擇方法。
2021-04-19 08:07:50

常用的浪涌保護(hù)元器件選型攻略

沖擊,具有極低的結(jié)電容,應(yīng)用于保護(hù)電子設(shè)備和人身免遭瞬態(tài)高電壓的危害,是防雷保護(hù)設(shè)備應(yīng)用最廣泛的開關(guān)元器件。東沃供應(yīng)的GDT浪涌電流可達(dá)20KA、40KA、50KA、60KA、100KA、150KA
2019-08-27 14:33:23

應(yīng)用全SiC模塊應(yīng)用要點(diǎn):專用柵極驅(qū)動器和緩沖模塊的效果

作為應(yīng)用全SiC模塊的應(yīng)用要點(diǎn),本文將在上一篇文章中提到的緩沖電容器基礎(chǔ)上,介紹使用專用柵極驅(qū)動器對開關(guān)特性的改善情況。全SiC模塊的驅(qū)動模式與基本結(jié)構(gòu)這里會針對下述條件與電路結(jié)構(gòu),使用緩沖電容器
2018-11-27 16:36:43

開關(guān)損耗更低,頻率更高,應(yīng)用設(shè)備體積更小的全SiC功率模塊

的開關(guān)電源電路相同。另外,SiC-SBD不產(chǎn)生短脈沖反向恢復(fù)現(xiàn)象,因此PWM控制無需擔(dān)心短脈沖時(shí)的異常浪涌電壓。不僅有助于提高逆變器和電源的效率,還可實(shí)現(xiàn)小型化,這是全SiC功率模塊的巨大優(yōu)勢。由
2018-12-04 10:14:32

開關(guān)電源浪涌電壓吸收元器件

開關(guān)電源浪涌電壓吸收元器件 開關(guān) 電源 通常具有較寬的輸入電壓,對輸入電壓的容差范圍較大,同時(shí)根據(jù)浪涌尖峰電壓峰值高,持續(xù)時(shí)間短的特點(diǎn),通常采用能量吸收型方案對浪涌尖峰電壓進(jìn)行濾除,即采用能量吸收
2023-12-18 15:24:53

開關(guān)電源噪聲對策的步驟

不當(dāng),效果則可能不理想?!癫襟E2:把握噪聲產(chǎn)生源與傳導(dǎo)路徑確認(rèn)產(chǎn)生的開關(guān)噪聲是從哪一路徑傳導(dǎo)到一次側(cè)或二次側(cè)的。噪聲對策需要在噪聲的傳導(dǎo)路徑實(shí)施。而且,必須對所有的傳導(dǎo)路徑采取對策。哪怕忽略了一處傳導(dǎo)
2019-03-19 06:20:03

開關(guān)電源噪聲對策的步驟

,效果則可能不理想。●步驟2:把握噪聲產(chǎn)生源與傳導(dǎo)路徑確認(rèn)產(chǎn)生的開關(guān)噪聲是從哪一路徑傳導(dǎo)到一次側(cè)或二次側(cè)的。噪聲對策需要在噪聲的傳導(dǎo)路徑實(shí)施。而且,必須對所有的傳導(dǎo)路徑采取對策。哪怕忽略了一處傳導(dǎo)
2018-11-27 16:42:41

搭載SiC-MOSFET和SiC-SBD的功率模塊

)工作頻率的高頻化,使周邊器件小型化(例:電抗器或電容等的小型化)主要應(yīng)用于工業(yè)機(jī)器的電源或光伏發(fā)電的功率調(diào)節(jié)器等。2. 電路構(gòu)成現(xiàn)在量產(chǎn)中的SiC功率模塊是一種以一個(gè)模塊構(gòu)成半橋電路的2in1類型
2019-03-12 03:43:18

有效實(shí)施更長距離電動汽車用SiC功率器件

雖然電動和混合動力電動汽車(EV]從作為功率控制器件的標(biāo)準(zhǔn)金屬氧化物半導(dǎo)體場效應(yīng)晶體管(MOSFET)到基于碳化硅(SiC)襯底和工藝技術(shù)的FET的轉(zhuǎn)變代表了提高EV的效率和整體系統(tǒng)級特性的重要步驟
2019-08-11 15:46:45

未來發(fā)展導(dǎo)向之Sic功率元器件

半導(dǎo)體的低阻值,可以高速工作,高溫工作,能夠大幅度削減從電力傳輸?shù)綄?shí)際設(shè)備的各種功率轉(zhuǎn)換過程的能量損耗。SiC功率元器件在節(jié)能和小型化方面功效卓著,其產(chǎn)品已經(jīng)開始實(shí)際應(yīng)用,并且還應(yīng)用在對品質(zhì)可靠性
2017-07-22 14:12:43

淺析SiC功率器件SiC SBD

二極管(FRD:快速恢復(fù)二極管),能夠明顯減少恢復(fù)損耗。有利于電源的高效率化,并且通過高頻驅(qū)動實(shí)現(xiàn)電感等無源器件的小型化,而且可以降噪。 廣泛應(yīng)用于空調(diào)、電源、光伏發(fā)電系統(tǒng)功率調(diào)節(jié)器、電動汽車
2019-05-07 06:21:51

測量SiC MOSFET柵-源電壓時(shí)的注意事項(xiàng)

SiCMOSFET具有出色的開關(guān)特性,但由于其開關(guān)過程電壓和電流變化非常大,因此如Tech Web基礎(chǔ)知識 SiC功率元器件SiC MOSFET:橋式結(jié)構(gòu)柵極-源極間電壓的動作-前言”中介
2022-09-20 08:00:00

第三代半導(dǎo)體材料盛行,GaN與SiC如何撬動新型功率器件

。這就使得MOSFET在SiC功率電子器件具有重要的意義。2000年研制了國內(nèi)第一個(gè)SiCMOSFETt31。器件最大跨導(dǎo)為0.36mS/mm,溝道電子遷移率僅為14cm2/(V·s)。反型層遷移率低
2017-06-16 10:37:22

羅姆在功率元器件領(lǐng)域的探索與發(fā)展

(SiC) 注2和GaN注3這類寬禁帶(WBG)半導(dǎo)體注4的功率元器件。WBG材料的最大特點(diǎn)如表1示,其絕緣擊穿電場強(qiáng)度較高。只要利用這個(gè)性質(zhì),就可提高與Si元件相同結(jié)構(gòu)時(shí)的耐壓性能。只要實(shí)現(xiàn)有耐壓余量
2019-07-08 06:09:02

羅姆在功率電子元器件范圍的展開

電壓、電流供應(yīng)電力的電源是不可或缺的。在這種“按所需方式供應(yīng)電力”的范圍,半導(dǎo)體也發(fā)揚(yáng)著重要的作用,從“處置電力(功率)”的含義動身,其中心半導(dǎo)體部件被稱為功率元器件功率半導(dǎo)體。    在功率元器件
2012-11-26 16:05:09

請問大功率的電子元器件有哪些

功率的電子元器件怎么理解?大功率的電子元器件有哪些?
2019-02-15 06:36:33

限制開機(jī)浪涌電流有哪些對策?

出現(xiàn)輸入浪涌電流的原因是什么?限制開機(jī)浪涌電流有哪些對策?
2021-06-18 07:26:24

電子元器件的防浪涌應(yīng)用

電子元器件的防浪涌應(yīng)用    電浪涌引起的電過應(yīng)力(EOS)損傷或燒毀是電子元器件在使用過程中最常見的失效模式之一。    電浪涌是一種隨機(jī)的短時(shí)間
2009-08-27 18:53:0867

SiC功率器件的封裝技術(shù)要點(diǎn)

SiC功率器件的封裝技術(shù)要點(diǎn)   具有成本效益的大功率高溫半導(dǎo)體器件是應(yīng)用于微電子技術(shù)的基本元件。SiC是寬帶隙半導(dǎo)體材料,與S
2009-11-19 08:48:432355

浪涌浪涌保護(hù)器概述

浪涌浪涌電流和浪涌電壓的概念解釋,浪涌保護(hù)器是什么,基本元器件的組成,本文針對浪涌浪涌保護(hù)器做出概述。
2011-11-02 13:46:332352

德國英飛凌專家:功率元器件市場將會增長

隨著降低環(huán)境負(fù)荷的要求日益提高,功率元器件市場在不斷增長。而且,為了進(jìn)一步減少電力損失,以SiC等新一代材料取代現(xiàn)行Si的動向也日益活躍。日前,記者就蓬勃發(fā)展的功率元器件
2012-10-22 11:10:361024

針對惡劣環(huán)境應(yīng)用的SiC功率器件

引言SiC功率器件已經(jīng)成為高效率、高電壓及高頻率的功率轉(zhuǎn)換應(yīng)用中Si功率器件的可行替代品。正如預(yù)期的優(yōu)越材料
2018-03-20 11:43:024444

介紹 SiC功率元器件

使用SiC的新功率元器件技術(shù)
2018-06-26 17:56:005775

SiC器件SiC材料的物性和特征,功率器件的特征,SiC MOSFET特征概述

SiC(碳化硅)是一種由Si(硅)和C(碳)構(gòu)成的化合物半導(dǎo)體材料。SiC臨界擊穿場強(qiáng)是Si的10倍,帶隙是Si的3倍,熱導(dǎo)率是Si的3倍,所以被認(rèn)為是一種超越Si極限的功率器件材料。SiC中存在
2018-07-15 11:05:419257

采用SiC材料元器件的特性結(jié)構(gòu)介紹

SiC(碳化硅)是一種由Si(硅)和C(碳)構(gòu)成的化合物半導(dǎo)體材料。SiC臨界擊穿場強(qiáng)是Si的10倍,帶隙是Si的3倍,熱導(dǎo)率是Si的3倍,所以被認(rèn)為是一種超越Si極限的功率器件材料。SiC中存在
2018-09-29 09:08:008115

SiC功率器件加速充電樁市場發(fā)展

隨著我國新能源汽車市場的不斷擴(kuò)大,充電樁市場發(fā)展前景廣闊。SiC材料的功率器件可以實(shí)現(xiàn)比Si基功率器件更高的開關(guān)頻繁,可以提供高功率密度、超小的體積,因此SiC功率器件在充電樁電源模塊中的滲透率不斷增大。
2019-06-18 17:24:501774

行業(yè) | 全SiC模塊正在加速,SiC功率器件走向繁榮

安森美半導(dǎo)體是功率電子領(lǐng)域的市場領(lǐng)導(dǎo)者之一,在SiC功率器件領(lǐng)域的地位正在迅速攀升。
2019-07-25 08:50:504206

威世推出新型功率器件縮小磁性元器件尺寸

功率器件企業(yè)、磁性元器件企業(yè)針對這些市場,開發(fā)出性能更優(yōu)的產(chǎn)品滿足這些市場的需求。 今年10月,磁性元器件大廠威世(Vishay)公司推出新型40 V n溝道MOSFET半橋功率級---SiZ240DT,可用來提高白色家電、醫(yī)療、通信應(yīng)用以及工業(yè)的功率
2021-07-11 16:46:231167

淺談柵極-源極電壓產(chǎn)生浪涌

中,我們將對相應(yīng)的對策進(jìn)行探討。關(guān)于柵極-源極間電壓產(chǎn)生浪涌,在之前發(fā)布的Tech Web基礎(chǔ)知識 SiC功率元器件 應(yīng)用篇的“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作”中已進(jìn)行了詳細(xì)說明。
2021-06-12 17:12:002563

柵極是源極電壓產(chǎn)生浪涌嗎?

忽略SiC MOSFET本身的封裝電感和外圍電路的布線電感的影響。特別是柵極-源極間電壓,當(dāng)SiC MOSFET本身的電壓和電流發(fā)生變化時(shí),可能會發(fā)生意想不到的正浪涌或負(fù)浪涌,需要對此采取對策。 在本文中,我們將對相應(yīng)的對策進(jìn)行探討。 什么是柵極-源極電壓產(chǎn)生
2021-06-10 16:11:442121

浪涌防護(hù)電路設(shè)計(jì)及元器件選擇

在電路設(shè)計(jì)中經(jīng)常會對電路元器件做相關(guān)的保護(hù),這里所說的是關(guān)于浪涌保護(hù)相關(guān)的電路部分,包括元器件選擇和電路設(shè)計(jì)部分。剛開始接觸這一部分有不足大家可以批評指正。
2022-05-30 09:51:087996

SiC功率元器件在醫(yī)療領(lǐng)域的應(yīng)用

了設(shè)計(jì)的復(fù)雜程度。SiC元器件的低導(dǎo)通電阻特性有助于顯著降低設(shè)備的能耗,從而有助于設(shè)計(jì)出能夠減少CO2排放量的環(huán)保型產(chǎn)品和系統(tǒng)。
2022-06-15 16:00:341368

SiC功率器件的發(fā)展及技術(shù)挑戰(zhàn)

碳化硅(SiC)被認(rèn)為是未來功率器件的革命性半導(dǎo)體材料;許多SiC功率器件已成為卓越的替代電源開關(guān)技術(shù),特別是在高溫或高電場的惡劣環(huán)境中。
2022-11-06 18:50:471289

SiC功率器件的現(xiàn)狀與展望!

碳化硅(SiC功率器件具有提高效率、動態(tài)性能和可靠性的顯著優(yōu)勢電子和電氣系統(tǒng)?;仡櫫?b class="flag-6" style="color: red">SiC功率器件發(fā)展的挑戰(zhàn)和前景
2022-11-11 11:06:141503

SIC功率器件的發(fā)展現(xiàn)狀!

近年來,SiC功率器件結(jié)構(gòu)設(shè)計(jì)和制造工藝日趨完善,已經(jīng)接近其材料特性決定的理論極限,依靠Si器件繼續(xù)完善來提高裝置與系統(tǒng)性能的潛力十分有限。本文首先介紹了SiC功率半導(dǎo)體器件技術(shù)發(fā)展現(xiàn)狀及市場前景,其次闡述了SiC功率器件發(fā)展中存在的問題,最后介紹了SiC功率半導(dǎo)體器件的突破。
2022-11-24 10:05:102020

SiC功率元器件的開發(fā)背景和優(yōu)點(diǎn)

SiC功率元器件具有優(yōu)于Si功率元器件的更高耐壓、更低導(dǎo)通電阻、可更高速工作,且可在更高溫條件下工作。接下來將針對SiC的開發(fā)背景和具體優(yōu)點(diǎn)進(jìn)行介紹。通過將SiC應(yīng)用到功率元器件上,實(shí)現(xiàn)以往Si功率元器件無法實(shí)現(xiàn)的低損耗功率轉(zhuǎn)換。不難發(fā)現(xiàn)這是SiC使用到功率元器件上的一大理由。
2023-02-09 11:50:19448

何謂全SiC功率模塊

SiC概要、SiC-SBD(肖特基勢壘二極管 )、SiC-MOSFET之后,來介紹一下完全由SiC功率元器件組成的“全SiC功率模塊”。本文作為第一篇,想讓大家了解全SiC功率模塊具體是什么樣的產(chǎn)品,都有哪些機(jī)型。
2023-02-08 13:43:21685

SiC MOSFET:柵極-源極電壓的浪涌抑制方法-浪涌抑制電路

在上一篇文章中,簡單介紹了SiC功率元器件中柵極-源極電壓中產(chǎn)生浪涌。從本文開始,將介紹針對產(chǎn)生SiC功率元器件浪涌對策。本文先介紹浪涌抑制電路。
2023-02-09 10:19:15696

SiC MOSFET:柵極-源極電壓的浪涌抑制方法-負(fù)電壓浪涌對策

本文的關(guān)鍵要點(diǎn)?通過采取措施防止SiC MOSFET中柵極-源極間電壓的負(fù)電壓浪涌,來防止SiC MOSFET的LS導(dǎo)通時(shí),SiC MOSFET的HS誤導(dǎo)通。?具體方法取決于各電路中所示的對策電路的負(fù)載。
2023-02-09 10:19:16589

SiC MOSFET:柵極-源極電壓的浪涌抑制方法-浪涌抑制電路的電路板布局注意事項(xiàng)

關(guān)于SiC功率元器件中柵極-源極間電壓產(chǎn)生浪涌,在之前發(fā)布的Tech Web基礎(chǔ)知識 SiC功率元器件 應(yīng)用篇的“SiC MOSFET:橋式結(jié)構(gòu)中柵極-源極間電壓的動作”中已進(jìn)行了詳細(xì)說明,如果需要了解,請參閱這篇文章。
2023-02-09 10:19:17707

SiC功率元器件的開發(fā)背景和優(yōu)點(diǎn)

前面對SiC的物理特性和SiC功率元器件的特征進(jìn)行了介紹。SiC功率元器件具有優(yōu)于Si功率元器件的更高耐壓、更低導(dǎo)通電阻、可更高速工作,且可在更高溫條件下工作。接下來將針對SiC的開發(fā)背景和具體優(yōu)點(diǎn)進(jìn)行介紹。
2023-02-22 09:15:30346

SiC-SBD特征以及與Si二極管的比較

SiC功率元器件的概述之后,將針對具體的元器件進(jìn)行介紹。首先從SiC肖特基勢壘二極管開始。
2023-02-22 09:16:27492

何謂全SiC功率模塊

SiC概要、SiC-SBD(肖特基勢壘二極管 )、SiC-MOSFET之后,來介紹一下完全由SiC功率元器件組成的“全SiC功率模塊”。本文想讓大家了解全SiC功率模塊具體是什么樣的產(chǎn)品,都有哪些機(jī)型。之后計(jì)劃依次介紹其特點(diǎn)、性能、應(yīng)用案例和使用方法。
2023-02-24 11:51:08430

什么是柵極-源極電壓產(chǎn)生浪涌

忽略SiC MOSFET本身的封裝電感和外圍電路的布線電感的影響。特別是柵極-源極間電壓,當(dāng)SiC MOSFET本身的電壓和電流發(fā)生變化時(shí),可能會發(fā)生意想不到的正浪涌或負(fù)浪涌,需要對此采取對策。在本文中,我們將對相應(yīng)的對策進(jìn)行探討。
2023-02-28 11:36:50551

測量SiC MOSFET柵-源電壓時(shí)的注意事項(xiàng):一般測量方法

紹的需要準(zhǔn)確測量柵極和源極之間產(chǎn)生浪涌。在這里,將為大家介紹在測量柵極和源極之間的電壓時(shí)需要注意的事項(xiàng)。我們將以SiC MOSFET為例進(jìn)行講解,其實(shí)所講解的內(nèi)容也適用于一般的MOSFET和IGBT等各種功率元器件,盡情參考。
2023-04-06 09:11:46731

R課堂 | SiC MOSFET:柵極-源極電壓的浪涌抑制方法-總結(jié)

本文是“SiC MOSFET:柵極-源極電壓的浪涌抑制方法”系列文章的總結(jié)篇。介紹SiC MOSFET的柵極-源極電壓產(chǎn)生浪涌、浪涌抑制電路、正電壓浪涌對策、負(fù)電壓浪涌對策浪涌抑制電路的電路板
2023-04-13 12:20:02814

測量SiC MOSFET柵-源電壓時(shí)的注意事項(xiàng):一般測量方法

紹的需要準(zhǔn)確測量柵極和源極之間產(chǎn)生浪涌。在這里,將為大家介紹在測量柵極和源極之間的電壓時(shí)需要注意的事項(xiàng)。我們將以SiC MOSFET為例進(jìn)行講解,其實(shí)所講解的內(nèi)容也適用于一般的MOSFET和IGBT等各種功率元器件,盡情參考。
2023-05-08 11:23:14644

羅姆與緯湃科技簽署SiC功率元器件長期供貨合作協(xié)議

SiC(碳化硅)功率元器件領(lǐng)域的先進(jìn)企業(yè)ROHM Co., Ltd. (以下簡稱“羅姆”)于2023年6月19日與全球先進(jìn)驅(qū)動技術(shù)和電動化解決方案大型制造商緯湃科技(以下簡稱“Vitesco”)簽署
2023-06-20 16:14:54139

新聞 | 羅姆與緯湃科技簽署SiC功率元器件長期供貨合作協(xié)議

SiC(碳化硅)功率元器件領(lǐng)域的先進(jìn)企業(yè) ROHM Co., Ltd. (以下簡稱“羅姆”)于2023年6月19日與全球先進(jìn)驅(qū)動技術(shù)和電動化解決方案大型制造商緯湃科技(以下簡稱“Vitesco
2023-06-21 08:10:02287

R課堂 | 漏極和源極之間產(chǎn)生浪涌

緩沖電路來降低線路電感,這是非常重要的。 首先,為您介紹 SiC MOSFET 功率轉(zhuǎn)換電路中,發(fā)生在漏極和源極之間的浪涌。 ·? 漏極和源極之間產(chǎn)生浪涌 ·?緩沖電路的種類和選擇 ·?C緩沖電路的設(shè)計(jì) ·?RC緩沖電路的設(shè)計(jì) ·?放電型RCD緩沖電路的設(shè)計(jì)
2023-06-21 08:35:02425

一文看懂SiC功率器件

范圍內(nèi)控制必要的p型、n型,所以被認(rèn)為是一種超越Si極限的功率器件材料。SiC中存在各種多型體(結(jié)晶多系),它們的物性值也各不相同。用于功率器件制作,4H-SiC最為
2023-08-21 17:14:581145

碳化硅(SiC功率器件在新能源汽車中的深入應(yīng)用解析

采用多芯片并聯(lián)的SiC功率模塊,會產(chǎn)生較嚴(yán)重的電磁干擾和額外損耗,無法發(fā)揮SiC器件的優(yōu)良性能;SiC功率模塊雜散參數(shù)較大,可靠性不高。 (2)SiC功率高溫封裝技術(shù)發(fā)展滯后。
2024-03-04 10:35:49132

一文解析SiC功率器件互連技術(shù)

和硅器件相比,SiC器件有著耐高溫、擊穿電壓 大、開關(guān)頻率高等諸多優(yōu)點(diǎn),因而適用于更高工作頻 率的功率器件。但這些優(yōu)點(diǎn)同時(shí)也給SiC功率器件的互連封裝帶來了挑戰(zhàn)。
2024-03-07 14:28:43107

已全部加載完成