人工智能和數(shù)學(xué)變換用于電能質(zhì)量的研究綜述
近年來(lái),由于故障、動(dòng)態(tài)運(yùn)行和非線性負(fù)荷的加入,使動(dòng)態(tài)電能質(zhì)量問(wèn)題越來(lái)越復(fù)雜,因此電能質(zhì)量的問(wèn)題重新受到關(guān)注。特別是隨著小波理論自身的發(fā)展和世界范圍內(nèi)小波分析算法研究熱潮的興起,以及各種人工智能技術(shù)在電力系統(tǒng)的成功應(yīng)用,對(duì)動(dòng)態(tài)電能質(zhì)量擾動(dòng)的起因和來(lái)源有了很好的理解,對(duì)動(dòng)態(tài)電能質(zhì)量的識(shí)別、檢測(cè)、分類和統(tǒng)計(jì)有了很 好的解決辦法。為了在現(xiàn)有研究成果的基礎(chǔ)上,進(jìn)一步對(duì)動(dòng)態(tài)電能質(zhì)量進(jìn)行研究,明確尚需進(jìn)行的工作,在大量查閱各種國(guó)際會(huì)議、學(xué)術(shù)刊物上發(fā)表的電能質(zhì)量論文后,本文綜述了近年來(lái)人工智能和傅立葉變換、短窗傅立葉變換和小波變換在電力系統(tǒng)電能質(zhì)量評(píng)估應(yīng)用中的主要成果與方法,并提出若干需要解決的問(wèn)題,已資拋磚引玉。
??? 關(guān)鍵詞: 傅立葉變換;小波變換;人工智能;動(dòng)態(tài)電能質(zhì)量
A summary of AI & mathematics transform applied to power quality study?
Wang Jing1, Shu Hong-chun2, Chen Xue-yun1
(1 Harbin Institute of Technology,Harbin,150001)
(2 Kunming University of Science and Technology, Kunming, 650001)?
??? Abstract: In the past decade, faults, dynamic operations, or nonlinear loads make the dynamic Power Quality complex. Thereby, increasing interest in power quality has evolved. With the development of wavelet theory, worldwide spread on the study of wavelet algorithm and the success applications of various AI techniques in power system, the causes and origins of dynamic power quality have a better comprehension. Meanwhile, the solutions of detection, identification, classification and statistics to power quality have been largely improved. In order to propel the further study on the power quality and realize the researches needed done, the main achievements and methods of power quality study, including AI, Fourier transform, Short-time Fourier transform, Wavelet transform, are surveyed in this paper after consulting lots of PQ thesises in conferences and science periodicals. Literature also exposes certain problems to be solved.?
??? Keywords: Fourier transform, wavelet transform, AI, dynamic power quality
0? 引言
??? 電能質(zhì)量的概念自從提出以來(lái)就一直含糊不清,用戶方、制造方和供電方對(duì)之的理解也大相徑庭。早期用戶設(shè)備對(duì)電壓擾動(dòng)不敏感,而且不容易對(duì)系統(tǒng)電壓與頻率造成負(fù)面影響,因此用電壓和頻率的偏移或畸變程度來(lái)衡量電能質(zhì)量的好壞就足夠了。近年來(lái),由于以下原因,電能質(zhì)量問(wèn)題變得復(fù)雜起來(lái):1)電力電子設(shè)備和敏感的微處理控制器的使用;2)工業(yè)處理過(guò)程的復(fù)雜化;3)大型計(jì)算機(jī)的投入;4)用于提高電力系統(tǒng)穩(wěn)定性的FACTS裝置的大量運(yùn)用;5)高效可調(diào)速電動(dòng)機(jī)等電力設(shè)備的投切;6)龐大的電網(wǎng)互聯(lián)結(jié)構(gòu);7)生產(chǎn)精密設(shè)備的要求。因此,傳統(tǒng)的電能質(zhì)量的概念被IEEE第22標(biāo)準(zhǔn)協(xié)調(diào)委員會(huì)推薦采用的11種動(dòng)態(tài)電能質(zhì)量專用術(shù)語(yǔ)[1]取代:斷電(Interruptions)、頻率偏差(Frequency Deviations)、電壓跌落(Sags)、電壓上升(Swells)、瞬時(shí)脈沖或突波(Transients Surges)、電壓波動(dòng)(Voltage Fluctuations)、電壓切痕(Notches)、諧波(Harmonics)、間諧波(Interharmonics)、過(guò)電壓(Overvoltages)和欠電壓(Undervoltages)。隨之而來(lái)的問(wèn)題是缺乏對(duì)這些暫態(tài)現(xiàn)象行之有效的檢測(cè)分析方法。只有正確識(shí)別影響電能質(zhì)量的諸多因素、查明相應(yīng)的起因和來(lái)源、檢測(cè)、分類并統(tǒng)計(jì)擾動(dòng)現(xiàn)象、確定擾動(dòng)范圍和幅值才能從根本上綜合治理并提高系統(tǒng)電能質(zhì)量。
??? 為此,國(guó)際上以多種形式、用各種方法和技術(shù)對(duì)電能質(zhì)量的擾動(dòng)問(wèn)題展開了多方面的研究與探討。綜合起來(lái),這些方法可以歸為利用各種數(shù)學(xué)變換、利用各種人工智能技術(shù),以及利用人工智能和數(shù)學(xué)變換結(jié)合的方法對(duì)擾動(dòng)進(jìn)行檢測(cè)、分類和抑制。?
1? 數(shù)學(xué)變換的應(yīng)用
1.1 傅立葉變換
??? 影響電能質(zhì)量的暫態(tài)信號(hào)通常具有很寬的頻譜,將其按頻譜展開能揭示故障的本質(zhì)。傅立葉變換(FT)就是最常見的一種將時(shí)域特征和頻域特征聯(lián)系起來(lái)的工具。通過(guò)傅立葉變換可以提供平穩(wěn)信號(hào)所含諧波的次數(shù)、各次諧波的幅值及其初相角并以幅頻特性的形式表現(xiàn)出來(lái),因此可以用于提取由于變壓器、交直流換流設(shè)備等造成的周期性諧波分量[2-4]。FT的缺點(diǎn)是:1)必須獲得信號(hào)在時(shí)域中的全部信息;2)對(duì)信號(hào)的局部畸變沒有標(biāo)定和度量能力,因此無(wú)法充分描述時(shí)變非平穩(wěn)信號(hào)的特征; 3)無(wú)法反映信號(hào)在局部時(shí)間范圍內(nèi)和局部頻帶上的譜信息。
??? 解決的一個(gè)辦法是短時(shí)傅立葉變換(STFT),通過(guò)引入一個(gè)滑動(dòng)的時(shí)間局部化“窗口函數(shù)”,對(duì)信號(hào)進(jìn)行分段截取,從而得到信號(hào)在某一固定時(shí)窗和頻窗內(nèi)的局部時(shí)-頻信息。選擇相對(duì)于擾動(dòng)小的多的時(shí)窗(必須仔細(xì)選擇時(shí)窗以避免吉布斯現(xiàn)象),STFT可以很好地反映信號(hào)局部范圍內(nèi)的諧波次數(shù)及幅值[5-7], 因此適用于檢測(cè)與諧波相關(guān)的擾動(dòng)。STFT的缺點(diǎn)是:1)沒有離散正交基,因此在進(jìn)行數(shù)值計(jì)算時(shí)沒有象FFT這樣有效的快速算法;2)一旦選定窗口函數(shù),時(shí)-頻窗的窗口形狀是固定的,所以對(duì)非平穩(wěn)信號(hào)的分析能力有限,盡管文獻(xiàn)[6]提出用寬時(shí)窗和窄時(shí)窗分別對(duì)信號(hào)進(jìn)行掃描,但仍無(wú)法改變STFT單一分辨率的事實(shí)。
??? 用Wigner譜分析方法可以克服STFT的上述缺點(diǎn),它是基于兩個(gè)信號(hào)內(nèi)積的傅立葉變換,和STFT一樣是時(shí)-頻二維聯(lián)合分布函數(shù),可以近似看作在時(shí)-頻二維平面上的能量密度函數(shù)。由于它具有較高的分辨率、能量集中性和跟蹤瞬時(shí)頻率的能力,用于進(jìn)行電能質(zhì)量分析時(shí),不但可以準(zhǔn)確測(cè)量基波和諧波分量的幅值,而且能夠準(zhǔn)確檢測(cè)到信號(hào)發(fā)生尖銳變化的時(shí)刻[5,8,9]。它的不足在于:1)必須以大于Nyquist采樣頻率兩倍以上的頻率進(jìn)行采樣;2)存在嚴(yán)重的交叉干擾現(xiàn)象。
1.2 小波變換
??? 國(guó)外最早關(guān)于小波變換在電力系統(tǒng)中的應(yīng)用的文章就是針對(duì)電能質(zhì)量的評(píng)估展開的[10]。國(guó)內(nèi)期刊上首次出現(xiàn)這方面的文章介紹則是在1999年[11],而到目前為止,在這方面所開展的工作仍然很少。
1.2.1 擾動(dòng)的識(shí)別
??? 利用小波變換在突變點(diǎn)的特性,可實(shí)現(xiàn)對(duì)電能質(zhì)量中的周期性陷波、暫態(tài)振蕩、電壓跌落以及閃變等擾動(dòng)問(wèn)題的幅值、發(fā)生時(shí)間與持續(xù)時(shí)間等特征參數(shù)的判斷。1994年,S.Santoso首先在文獻(xiàn)[12]提出小波變換是評(píng)估電能質(zhì)量的有效方法。該文用db4和db10小波函數(shù)分別對(duì)電壓跌落、平頂波和諧波畸變進(jìn)行小波變換,實(shí)現(xiàn)了對(duì)電能質(zhì)量擾動(dòng)的檢測(cè)與時(shí)間定位。但并未討論小波母函數(shù)的選擇對(duì)檢測(cè)結(jié)果的影響。文獻(xiàn)[13]則通過(guò)分析比較得出db4小波是db小波系中最適用于檢測(cè)電能質(zhì)量擾動(dòng)的小波的結(jié)論。文獻(xiàn)[14]還對(duì)重構(gòu)信號(hào)和原始信號(hào)的誤差以及小波分析和傅氏分析的結(jié)果進(jìn)行比較。另外,利用連續(xù)小波變換后的時(shí)-頻相平面圖可檢測(cè)電壓跌落和瞬時(shí)過(guò)電壓[15];利用小波變換的模極大值理論[16-18]同樣可精確地對(duì)電壓跌落的發(fā)生、恢復(fù)時(shí)刻進(jìn)行定位。文獻(xiàn)[19]則傾向于對(duì)傅氏變換和小波變換下電壓下降的三個(gè)指標(biāo):RMS、最大值和基頻幅值進(jìn)行比較,該文同時(shí)還分析了不同時(shí)窗選擇的重要性。
??? 為了提取暫態(tài)信號(hào)中各分量的幅值包絡(luò)、相位、瞬時(shí)頻率等特征信息,得到比實(shí)小波更多的信息,可采用基于小波變換的解析信號(hào)分解方法[20],或以復(fù)小波為小波母函數(shù)[21-22],利用復(fù)小波變換的復(fù)合信息和相位信息輔助幅值信息進(jìn)行擾動(dòng)信息檢測(cè)。
1.2.2 擾動(dòng)數(shù)據(jù)的壓縮
??? 當(dāng)電力系統(tǒng)發(fā)生擾動(dòng)后,為了記錄下完整的擾動(dòng)信息,通常需要1~4MHz的采樣率,使得數(shù)據(jù)量極大。如此龐大的數(shù)據(jù)量向調(diào)度中心上傳時(shí),不但占用數(shù)據(jù)通道時(shí)間過(guò)長(zhǎng)而且容易造成數(shù)據(jù)通道阻塞。這使電磁暫態(tài)信號(hào)的數(shù)據(jù)存儲(chǔ)和數(shù)據(jù)通信均面臨如何提取暫態(tài)信號(hào)中的有效部分,實(shí)現(xiàn)數(shù)據(jù)壓縮的挑戰(zhàn)。電力系統(tǒng)中現(xiàn)有擾動(dòng)監(jiān)測(cè)儀的數(shù)據(jù)簡(jiǎn)約技術(shù)采用重疊方法即對(duì)現(xiàn)有數(shù)據(jù)不斷覆蓋,或采用量化技術(shù)即把一系列相同的波形看成一個(gè)整體[23]。這兩種方法的確節(jié)省了存儲(chǔ)空間,但卻不是一般意義上的數(shù)據(jù)壓縮概念。利用小波變換分解和重構(gòu)的特性對(duì)電壓擾動(dòng)數(shù)據(jù)進(jìn)行壓縮[24-27]的算法見圖1。該方法首先定一個(gè)閾值,然后將絕對(duì)值小于閾值的信號(hào)的小波變換系數(shù)置為零,僅僅將非零系數(shù)的位置及 其數(shù)值記錄下來(lái)。這種方法的壓縮比主要決定于非零系數(shù)的多少,一般壓縮后的數(shù)據(jù)長(zhǎng)度只有原信號(hào)的1/6-1/3,相應(yīng)的壓縮率可達(dá)到3-6倍。將壓縮后的信號(hào)重構(gòu)所得到的恢復(fù)信號(hào)與原始信號(hào)的歸一化均方誤差小于10-6-10-5。這樣經(jīng)過(guò)壓縮既節(jié)省了錄波器內(nèi)存又節(jié)約信道,且壓縮造成的失真小。
1.2.3 擾動(dòng)的分類
??? 文獻(xiàn)[28]是最早以文章的形式發(fā)表的運(yùn)用小波理論對(duì)擾動(dòng)進(jìn)行分類的文章。該文運(yùn)用一非正交的二次樣條小波將暫態(tài)波形進(jìn)行小波變換,提取變換后的特征信號(hào),然后運(yùn)用貝葉斯分類器來(lái)識(shí)別各種暫態(tài)。但此方法的實(shí)現(xiàn)過(guò)程卻太過(guò)繁瑣。文獻(xiàn)[29-30]考慮用最大似然法來(lái)進(jìn)行擾動(dòng)的分類。文獻(xiàn)[29]首先設(shè)計(jì)了一個(gè)濾波器把擾動(dòng)分量從基頻分量中提取出來(lái),之后用Battle-Lemarie樣條小波函數(shù)對(duì)擾動(dòng)分量進(jìn)行小波變換,將得到的小波系數(shù)進(jìn)行特征提取后,用最大似然準(zhǔn)則得到最終決策。該方法不但可以區(qū)分各種電壓擾動(dòng)且能指出擾動(dòng)的原因。文獻(xiàn)[30]使用基于小波的隱Markov模型的參數(shù)最優(yōu)化估計(jì)方法,正確率可達(dá)到95.5%。文獻(xiàn)[31]進(jìn)一步改進(jìn)了文獻(xiàn)[30],提出在時(shí)域內(nèi)基于規(guī)則,而在頻域內(nèi)基于隱Markov模型的擾動(dòng)分類方法。文獻(xiàn)[32]則利用擾動(dòng)信號(hào)在不同尺度下的能量分布的不同,建造了一條基于多分辨率的擾動(dòng)偏差曲線,根據(jù)不同擾動(dòng)在此曲線上呈現(xiàn)出的差別,此方法不但能有效地檢測(cè)各種擾動(dòng),還能對(duì)擾動(dòng)原因進(jìn)行判斷。文獻(xiàn)[33]提出在時(shí)域而非頻域內(nèi)確定擾動(dòng)的起始時(shí)刻和持續(xù)時(shí)間,用一基于Vetterli-Herley-Sweldens定理的Lifting方法構(gòu)成的雙正交復(fù)小波,在小波域內(nèi)一個(gè)特定尺度下確定幅度,之后用二進(jìn)數(shù)特征量表示不同擾動(dòng),進(jìn)行分類。該文對(duì)五種暫態(tài)擾動(dòng)進(jìn)行分類,結(jié)果正確。
??? 但是,由于電能質(zhì)量擾動(dòng)涉及的特征量太多,使得分類判據(jù)復(fù)雜易錯(cuò),因此直接提取小波變換后的特征量進(jìn)行擾動(dòng)分類的研究并不是太多。大量的電力工作者轉(zhuǎn)為研究用人工智能的方法對(duì)擾動(dòng)進(jìn)行分類。
2 人工智能的應(yīng)用
??? 近年來(lái),人工智能技術(shù)發(fā)展迅速,分支眾多,除了人工神經(jīng)網(wǎng)絡(luò)、模糊邏輯、專家系統(tǒng)和遺傳算法等技術(shù),也有人研究將不同特性的智能技術(shù)結(jié)合起來(lái)進(jìn)行應(yīng)用,如:模糊神經(jīng)網(wǎng)絡(luò)、小波神經(jīng)網(wǎng)絡(luò)、模糊專家系統(tǒng)、自適應(yīng)模糊邏輯等,以期對(duì)電力系統(tǒng)的運(yùn)行、監(jiān)試、預(yù)測(cè)、控制和規(guī)劃發(fā)揮更大的作用。
2.1 擾動(dòng)的分類
??? 早期的利用ANN對(duì)擾動(dòng)進(jìn)行分類的方法直接用DFT提取信號(hào)中的不同諧波次數(shù),并且把若干次諧波次數(shù)歸為一類擾動(dòng)的特征量(3次、6次和9次諧波作為一種,5次和7次諧波作為一種,11次和13次諧波作為一種)輸入不同的神經(jīng)網(wǎng)絡(luò)[34]進(jìn)行分類。由于受DFT的限制,這種方法的有效性受到限制,但這種思路卻一直延續(xù)至今。1996年,S.Santoso在文獻(xiàn)[35]中將雙正交小波用于檢測(cè)、定位和識(shí)別不同原因的電能質(zhì)量擾動(dòng)問(wèn)題。作者認(rèn)為可以根據(jù)在各尺度下小波系數(shù)平方值體現(xiàn)出的特征,用ANN等軟計(jì)算方法對(duì)電能質(zhì)量的擾動(dòng)進(jìn)行自動(dòng)識(shí)別。該文獻(xiàn)對(duì)將小波變換應(yīng)用于電能質(zhì)量的評(píng)估做了探索性的研究和有益的嘗試,但并未討論由于輸入數(shù)據(jù)的誤差所帶來(lái)的分類器判斷錯(cuò)誤的問(wèn)題。同年,文獻(xiàn)[36]采用非正交樣條小波重又對(duì)電容器投切暫態(tài)進(jìn)行分析,該文作者對(duì)文獻(xiàn)[28]中未討論的具體實(shí)現(xiàn)細(xì)節(jié)進(jìn)行了大量的工作。首先利用濾波器組給出了一個(gè)可用任何小波進(jìn)行變換的數(shù)字設(shè)備,然后利用與文獻(xiàn)[35]相同的思路對(duì)暫態(tài)信號(hào)進(jìn)行特征的提取。在S.Santoso思想的啟發(fā)下,F(xiàn).Mo [37]提出可以利用ANN技術(shù)實(shí)現(xiàn)智能暫態(tài)錄波儀,以克服傳統(tǒng)錄波儀必須人工分析波形、閾值嚴(yán)格以及無(wú)法提供實(shí)時(shí)信息等缺點(diǎn)。但該文并未提供任何具體的實(shí)現(xiàn)步驟。B.Perunicic[38]也提出一種集數(shù)字濾波、小波變換和ANN為一體的電能質(zhì)量檢測(cè)和分類的新方法??傮w思路如圖2所示。該文對(duì)噪聲、次諧波畸變、周期性電壓波動(dòng)、電壓凹陷、直流偏移以及振蕩等10種電能質(zhì)量擾動(dòng)問(wèn)題進(jìn)行檢測(cè)與分類,得到良好的效果。同時(shí),該文對(duì)小波母函數(shù)的選擇、采樣率和采樣周期、監(jiān)測(cè)器位置和性能等細(xì)節(jié)問(wèn)題進(jìn)行了全面地討論。
??? 2000年,S.Santoso利用傅氏和小波變換的方法對(duì)電能質(zhì)量擾動(dòng)進(jìn)行了特征提取[39]后,提出了完整的基于小波的電能質(zhì)量擾動(dòng)波形的神經(jīng)網(wǎng)絡(luò)分類器的實(shí)現(xiàn)方法[40-41]。這兩篇文章對(duì)小波理論及其在電力系統(tǒng)中的應(yīng)用起到了重要的作用,主要流程示于圖3。其中Ident表示用傳統(tǒng)的方法判斷擾動(dòng)是否為電 壓跌落或瞬時(shí)斷電,之所以不用小波變換處理這兩種情況是由于小波變換難以處理光滑連續(xù)的電壓跌落。 該文提出用各尺度下的小波系數(shù)作為ANN的輸入特征矢量,這使該工作的輸入量太大,于是,文獻(xiàn)[42-43]提出用各尺度下的能量的集合作為擾動(dòng)的特征輸入矢量,不但使輸入量大為減小,而且得到很好的分類效果。文獻(xiàn)[44]則首先找出小波變換后含最大能量的尺度,用該尺度的小波系數(shù)與原始正弦波形的小波系數(shù)相減,并取其差值作為神經(jīng)網(wǎng)絡(luò)的輸入變量,從而成功對(duì)8種單一擾動(dòng)進(jìn)行了有效區(qū)分。
??? 但基于小波的ANN方法有時(shí)也會(huì)誤判,而且對(duì)多重?cái)_動(dòng)的分辨率低或者根本無(wú)法分辯。這是由于以下原因:1)小波變換難以檢測(cè)頻率微變擾動(dòng);2)用來(lái)作為ANN輸入量的特征量難以選取,無(wú)法精確描述各種擾動(dòng);3)送入ANN進(jìn)行訓(xùn)練的樣本數(shù)無(wú)法全面覆蓋各種擾動(dòng)問(wèn)題;4)基于小波的ANN方法訓(xùn)練的結(jié)果受ANN本身結(jié)構(gòu)的限制。
??? 文獻(xiàn)[45]對(duì)ANN進(jìn)一步改進(jìn),提出使用小波模糊ANN分類器對(duì)電能質(zhì)量問(wèn)題進(jìn)行檢測(cè)與分析,該方法首先從原始信號(hào)中提取擾動(dòng)分量并去噪,然后用小波變換提取特征值,最后進(jìn)行模糊ANN分析與識(shí)別,該方法大大減少了輸入ANN的特征值的個(gè)數(shù),且對(duì)各種擾動(dòng)問(wèn)題有良好的適應(yīng)性。文獻(xiàn)[46]提出ANN模糊分類器。該文首先將擾動(dòng)分為三組,選取不同尺度下的小波系數(shù)分別作為這三組的ANN輸入特征量,在ANN訓(xùn)練后,再通過(guò)一模糊聯(lián)想記憶變換,最大限度消除模式識(shí)別中的不確定性,從而提高系統(tǒng)的精確性并簡(jiǎn)化模型。文獻(xiàn)[47]為電能質(zhì)量的擾動(dòng)的分類提供了一條全新的思路。它把模糊邏輯和專家系統(tǒng)結(jié)合,通過(guò)FFT/WT重新定義了8個(gè)特征量,建立相應(yīng)的規(guī)則,也得到了很好的分類效果。
2.2 電能質(zhì)量的提高
??? 除了用AI方法對(duì)電能質(zhì)量的擾動(dòng)進(jìn)行分類分析外,也有文獻(xiàn)考慮用AI方法提高電能質(zhì)量,包括用模糊方法實(shí)現(xiàn)電壓和無(wú)功的控制[48]、用專家系統(tǒng)、遺傳算法和模糊集理論實(shí)現(xiàn)電容器組的最優(yōu)分布[49-51];用模糊邏輯分析擾動(dòng)對(duì)敏感負(fù)荷的作用[52]。
3? 結(jié)論
??? 目前,在動(dòng)態(tài)電能質(zhì)量缺少統(tǒng)一的定義、統(tǒng)一的實(shí)踐標(biāo)準(zhǔn)和統(tǒng)一的對(duì)擾動(dòng)進(jìn)行解釋的標(biāo)準(zhǔn)的情況下,結(jié)合各種人工智能技術(shù)和先進(jìn)的數(shù)學(xué)變換工具在對(duì)動(dòng)態(tài)電能質(zhì)量進(jìn)行檢測(cè)與識(shí)別中的作用已成為一個(gè)不爭(zhēng)的事實(shí)。各種AI方法和數(shù)學(xué)變換均有優(yōu)點(diǎn)也有缺陷,沒有哪一種方法是萬(wàn)能的,應(yīng)該結(jié)合各自的長(zhǎng)處,對(duì)動(dòng)態(tài)電能質(zhì)量進(jìn)行最有效的分析。目前為止,對(duì)動(dòng)態(tài)電能質(zhì)量進(jìn)行識(shí)別使用得最多的仍然是基于小波變換的ANN技術(shù),其它AI方法的研究尚不多見,而且,大部分的識(shí)別只針對(duì)單一擾動(dòng),而對(duì)多重?cái)_動(dòng)的分析幾乎沒有,這些問(wèn)題有待進(jìn)一步的研究。
評(píng)論