切換工作模式 - 詳解如何實(shí)現(xiàn)開關(guān)電源待機(jī)低功耗

2012年12月03日 15:00 來源:互聯(lián)網(wǎng) 作者:秩名 我要評(píng)論(0)

標(biāo)簽:開關(guān)電源(2)電源(1002)

  3.3 切換工作模式

  3.3.1 QR→PWM

  對(duì)于工作在高頻工作模式的開關(guān)電源,在待機(jī)時(shí)切換至低頻工作模式可減小待機(jī)損耗。例如,對(duì)于準(zhǔn)諧振式開關(guān)電源(工作頻率為幾百kHz到幾MHz),可在待機(jī)時(shí)切換至低頻的脈寬調(diào)制控制模式PWM(幾十kHz)。

  IRIS40xx芯片就是通過QR與PWM切換來提高待機(jī)效率的。圖4是IRIS4015構(gòu)成的反激式開關(guān)電源,重載時(shí),輔助繞組電壓大,R1分壓大于0.6V,Q1導(dǎo)通,輔助準(zhǔn)諧振信號(hào)經(jīng)過D1,D2,R3,C2構(gòu)成的延時(shí)電路到達(dá)IRIS4015的FB腳,內(nèi)部比較器對(duì)該信號(hào)進(jìn)行比較,電路工作在準(zhǔn)諧振模式。當(dāng)電源處于輕載和待機(jī)時(shí)候,輔助繞組電壓較小,Q1關(guān)斷,諧振信號(hào)不能傳輸至FB端,F(xiàn)B電壓小于芯片內(nèi)部的一個(gè)門限電壓,不能觸發(fā)準(zhǔn)諧振模式,電路則工作在更低頻的脈寬調(diào)制控制模式。

  

  圖4 由IRIS4015構(gòu)成的QR/PWM反激式電源電路

  3.3.2 PWM→PFM

  對(duì)于額定功率時(shí)工作在PWM模式的開關(guān)電源,,也可以通過切換至PFM模式提高待機(jī)效率,即固定開通時(shí)間,調(diào)節(jié)關(guān)斷時(shí)間,負(fù)載越低,關(guān)斷時(shí)間越長(zhǎng),工作頻率也越低。圖5是采用NS公司的LM2618控制的Buck轉(zhuǎn)換器電路和分別采用PWM和PFM控制方法的效率比較曲線。由圖可見,在輕載時(shí)采用PFM模式的電源效率明顯大于采用PWM模式時(shí)的效率,且負(fù)載越低,PFM效率優(yōu)勢(shì)越明顯。將待機(jī)信號(hào)加在其PW/引腳上,在額定負(fù)載條件下,該引腳為高電平,電路工作在PWM模式,當(dāng)負(fù)載低于某個(gè)閾值時(shí),該引腳被拉為低電平,電路工作在PFM模式。實(shí)現(xiàn)PWM和PFM的切換,也就提高了輕載和待機(jī)狀態(tài)時(shí)的電源效率。

  通過降低時(shí)鐘頻率和切換工作模式實(shí)現(xiàn)降低待機(jī)工作頻率,提高待機(jī)效率,可保持控制器一直在運(yùn)作,在整個(gè)負(fù)載范圍中,輸出都能被妥善的調(diào)節(jié)。即使負(fù)載從零激增至滿負(fù)載的情況下,能夠快速反應(yīng),反之亦然。輸出電壓降和過沖值都保持在允許范圍內(nèi)。

  

  3.4可控脈沖模式(Burst Mode)

  可控脈沖模式,也可稱為跳周期控制模式(Skip Cycle Mode)是指當(dāng)處于輕載或待機(jī)條件時(shí),由周期比PWM控制器時(shí)鐘周期大的信號(hào)控制電路某一環(huán)節(jié),使得PWM的輸出脈沖周期性的有效或失效,如圖6所示。這樣即可實(shí)現(xiàn)恒定頻率下通過減小開關(guān)次數(shù),增大占空比來提高輕載和待機(jī)的效率。該信號(hào)可以加在反饋通道,PWM信號(hào)輸出通道,PWM芯片的使能引腳(如LM2618,L6565)或者是芯片內(nèi)部模塊(如NCP1200,F(xiàn)SD200,L6565和TinySwitch系列芯片)。

  

  NCP1200的內(nèi)部跳周期模塊結(jié)構(gòu)見圖7,當(dāng)反饋檢測(cè)腳FB的電壓低于1.2V(該值可編程)時(shí),跳周期比較器控制Q觸發(fā)器,使輸出關(guān)閉若干時(shí)鐘周期,也即跳過若干個(gè)周期,負(fù)載越輕,跳過的周期也越多。為免音頻噪音,只有在峰值電流降至某個(gè)設(shè)定值時(shí),跳周期模式才有效。

  

  圖7 NCP1200跳周期模塊結(jié)構(gòu)

  而FSD200則是通過控制內(nèi)部驅(qū)動(dòng)器實(shí)現(xiàn)可控脈沖模式,即將

  腳的反饋電壓與0.6V/0.5V遲滯比較器比較,由比較結(jié)果控制門極驅(qū)動(dòng)輸出,其結(jié)構(gòu)可見圖8。我們可根據(jù)此原理用分立元件實(shí)現(xiàn)普通芯片的Burst Mode功能,即檢測(cè)次級(jí)電壓判斷電源是否處于待機(jī)狀態(tài),通過遲滯比較器,控制芯片輸出,電路如圖9所示。

  

  控制反饋通道是實(shí)現(xiàn)一般PWM控制器的可控脈沖模式的方法之一。其電路可見圖10,

  是

  反饋信號(hào),當(dāng)Burst Signal為低電平時(shí),Q1關(guān)斷,

  電路正常工作,當(dāng)Burst Signal為低電平時(shí),Q1導(dǎo)通,R1被短路,

  流過Q1

  被拉高至

  -0.6V,反饋信號(hào)

  不能反映在

  上,控制器因此輸出低電平。

  另外對(duì)于有使能腳的PWM控制器,如L6565等,用可控脈沖信號(hào)控制使能腳使控制芯片有效或失效,也可以實(shí)現(xiàn)Burst Mode,上述Burst Signal可由圖1中所示的遲滯比較器產(chǎn)生。

  

  圖10 控制反饋通道的Burst Mode

  4 存在的問題

  以上介紹的降頻和Burst Mode方法在提高待機(jī)效率的同時(shí),也帶來一些問題,首先是頻率降低導(dǎo)致輸出電壓紋波的增加,其次如果頻率降至20kHz以內(nèi),可能有音頻噪音。而在Burst Mode的OFF時(shí)期內(nèi),如果負(fù)載激增,輸出電壓會(huì)大大降低,如果輸出電容不夠大,電壓甚至可能降低至零。如果增大輸出電容,以減小輸出電壓紋波,則會(huì)導(dǎo)致成本增加,并會(huì)影響系統(tǒng)動(dòng)態(tài)性能。因此必須綜合考慮。

上一頁12

本文導(dǎo)航