欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

子陣級LCMV循環(huán)優(yōu)化算法,能夠很大程度地降低求逆矩陣的維度

SwM2_ChinaAET ? 來源:lq ? 2019-10-01 16:53 ? 次閱讀

摘要:

在傳統(tǒng)LCMV波束形成器以及子陣空間部分自適應陣的基礎上,提出了一種新穎的降維方法。首先將大規(guī)模陣列按照子陣劃分的某種規(guī)則劃分為若干組子陣列,每一組子陣列使用相同的權值。在權值優(yōu)化過程中,每一次只更新權向量的一部分,通過多次迭代更新使系統(tǒng)搜索得到最優(yōu)權值,避免了全維相關矩陣的求逆運算。實驗結果表明,與傳統(tǒng)方法相比,該方法在大規(guī)模陣列波束形成時能夠獲得更高的信干噪比,并減小了求逆矩陣的維數(shù),在一定程度上降低了計算復雜度及硬件成本。

中文引用格式:肖宇彤,周淵平,肖駿,等. 子陣級LCMV循環(huán)優(yōu)化自適應波束形成算法研究[J].電子技術應用,2019,45(7):67-71.
英文引用格式:Xiao Yutong,Zhou Yuanping,Xiao Jun,et al. Research on sub-array LCMV cyclic optimization adaptive beamforming algorithm[J]. Application of Electronic Technique,2019,45(7):67-71.

0 引言

自適應波束形成是自適應陣列信號處理的重要分支,廣泛應用于無線通信、雷達、語音信號處理等領域[1]。自適應波束形成問題是在某一準則下尋求最優(yōu)權矢量,其中包括最小均方(Minimum Mean Squared Error,MMSE)準則、最大信干噪比(Maximum Signal to Interference and Noise Ratio,MSINR)準則、最小噪聲方差(Minimum Noise Variance,MNV)準則[2]。線性約束最小方差(Linearly Constrained Minimum Variance,LCMV)波束形成器是基于MNV的自適應波束形成算法,它在最小方差無失真響應(Minimum Variance Distortionless Response,MVDR)濾波器的基礎上引入了線性約束[3]。但在實際應用中,陣列的陣元數(shù)目通常十分龐大,如果使用傳統(tǒng)的LCMV算法,全維矩陣求逆的運算量將會變得極其復雜,并且收斂性很差,在工程中難以應用。因此,研究降維方法不僅對理論的發(fā)展有重要意義,而且對工程實踐也有重要意義[4]。 本文提出的子陣級LCMV循環(huán)優(yōu)化算法首先對全維陣列進行抽取,形成一組大小不同的子陣列,每組子陣采用相同的權值。在此基礎上,再對子陣列進行分塊處理,利用循環(huán)迭代的思想對權向量進行分塊循環(huán)優(yōu)化使其達到收斂。實驗結果表明,該方法在大規(guī)模陣列波束形成時相較于傳統(tǒng)LCMV方法能夠獲得更高的信干噪比(Signal to Interference and Noise Ratio,SINR),相較于子陣級LCMV算法能夠在達到收斂的基礎上進一步減小求逆矩陣的維數(shù),降低計算復雜度及硬件成本。

1 LCMV算法

假設一個M陣元的陣列,X(n)是n時刻M×1維的輸入信號向量,C是M×L維的約束矩陣,f是L×1維的約束向量。LCMV算法描述如下:

2部分自適應陣列處理——子陣級LCMV算法

子陣空間部分自適應陣的結構如圖1所示,它是將整個陣列劃分為若干個子陣列,每個子陣采用相同的權值進行波束形成[5]。

對M陣元均勻線陣進行抽取形成r個子陣,定義降維矩陣T為:

式中,CT=THC是降維后的約束矩陣,維度為r×L。WT是降維權向量,由于將全陣列抽取為了r個子陣,每個子陣中的陣元共用同一個權值,因此WT的維數(shù)為r×1。

3 子陣級LCMV循環(huán)優(yōu)化算法

將陣列降維輸入信號XT(n)分塊為:

式中:

其中,RTii是降維輸入信號向量分塊xTi(n)的自相關矩陣。

綜上,子陣級LCMV循環(huán)優(yōu)化算法在處理大規(guī)模陣列波束形成時的過程如下:

4 仿真分析

4.1 實驗1

采用均勻線陣,陣元個數(shù)為60,陣元之間的間距為半波長,即d=2/λ。采用子陣級陣列劃分,將60個陣元不規(guī)則劃分為12組,每組的陣元個數(shù)依次為:10、6、5、4、4、1、1、4、4、5、6、10。期望信號從0°方向入射,干擾方向為-30°、40°、70°。初始信噪比為10 dB,初始干噪比為10 dB,選取的快拍數(shù)為10 000,子陣循環(huán)時每個分塊大小為2。按照上述參數(shù)設置,理想情況下信干噪比SINR=27.781 5 dB。 圖2所示是使用LCMV算法形成的波束圖,信干噪比SINR=20.868 2 dB。

圖3虛線所示是子陣級LCMV算法形成的波束圖,信干噪比SINR=26.210 5 dB;實線所示是子陣級LCMV循環(huán)優(yōu)化算法形成的波束圖, 信干噪比SINR=26.317 0 dB。

圖4是子陣級循環(huán)優(yōu)化的信干噪比收斂曲線圖,經(jīng)過170次循環(huán)迭代后權值得到收斂。

由圖2~圖4可知,在大規(guī)模陣列中,使用LCMV算法得到的波束并不是最佳:收斂性差,旁瓣效應顯著且運算量巨大。使用子陣級LCMV算法形成波束時比LCMV算法的SINR高出了約5 dB,干擾得到了有效抑制,且大幅度降低了波束的旁瓣。子陣級LCMV循環(huán)優(yōu)化算法通過循環(huán)迭代,波束的SINR收斂于子陣級LCMV算法的SINR,且將輸入信號自相關矩陣的維度從60×60降低到2×2。雖然增加了迭代過程,但是大幅度降低了矩陣求逆的運算復雜度,這在實際工程應用中是可行的[7]。

4.2 實驗2

初始參數(shù)保持不變,將快拍數(shù)減小至2 000,3種算法形成的波束圖如圖5、圖6所示。可知當快拍數(shù)減小時,LCMV算法已經(jīng)無法形成性能良好的波束了,而子陣級LCMV算法與子陣級LCMV循環(huán)優(yōu)化算法能夠維持良好的性能,二者的SINR分別為23.639 1 dB、25.482 0 dB。這說明本文所提出的算法能很好地適用于短快拍的應用場景。

4.3 實驗3

保持實驗1中初始參數(shù)不變,將分塊的大小從2變?yōu)?,子陣級LCMV循環(huán)優(yōu)化算法收斂曲線如圖7所示??芍?,隨著分塊大小的增加,迭代次數(shù)是在不斷減小的。

4.4 實驗4

為了拓寬主瓣寬度以增加波束的穩(wěn)健性,在實驗1基礎上加入高階導數(shù)約束[8]。圖8所示為加入三階導數(shù)約束時,主瓣寬度相較于圖3不施加約束時得到了一定展寬,信干噪比為24.175 9 dB。

4.5 實驗5

由于在信號傳輸過程中存在多徑,多徑在波束形成中屬于相干干擾的一種[9]。此處對子陣級LCMV循環(huán)優(yōu)化算法的相干干擾抑制進行研究。保持實驗1中的初始參數(shù)不變,將-30°方向處的非相干干擾變?yōu)橄喔筛蓴_,在約束矩陣C中施加相干干擾方向的零點約束,實驗結果如圖9所示。此時在相干干擾方向形成了很深的零陷,且信干噪比維持在26.997 6 dB。該方法雖然犧牲了一個自由度,但保證了期望信號不會因相干干擾的存在而被對消。

5 結論

針對大規(guī)模陣列波束形成問題,本文提出了子陣級LCMV循環(huán)優(yōu)化算法,能夠很大程度地降低求逆矩陣的維度,避免了全維矩陣求逆的復雜性。通過實驗結果分析,該算法能夠在降低維度的同時,形成性能良好的波束,并且在施加導數(shù)約束或存在相干干擾時依然適用。這在實際工程應用中降低了大規(guī)模相控陣列的計算復雜度和硬件復雜度,具有一定的實用價值。

參考文獻

[1] 肖駿,周淵平,肖宇彤.基于CSDM-MIMO系統(tǒng)的虛擬信道估計與權值優(yōu)化[J].電子技術應用,2019,45(4):83-86.

[2] 羅俊.認知無線電中基于多天線的信號處理技術的研究[D].武漢:華中師范大學,2017.

[3] 徐峰,孫雨澤,楊小鵬,等.MIMO雷達波束形成的低副瓣LCMV算法[J].信號處理,2017,33(6):805-810.

[4] YU L,ZHANG X,WEI Y.Adaptive beamforming technique for large-scale arrays with various subarray selections[C].CIE International Conference on Radar.IEEE,2017.

[5] HU X,GUO L,LI S,et al.Improved orthogonal projection adaptive beamforming based on normalization at subarray level[C].IET International Radar Conference 2015.IET,2015.

[6] 王永良,丁前軍,李榮鋒.自適應陣列處理[M].北京:清華大學出版社,2009.

[7] 劉權,周淵平,徐磊,等.波束形成算法研究與改進[J].信息技術與網(wǎng)絡安全,2018,37(4):92-94,109.

[8] YANG X,SUN Y,LIU Y,et al.Derivative constraint-based householder multistage wiener filter for adaptive beamforming[C].International Radar Conference.IET,2013.

[9] ZHANG L,LIU W.A class of robust adaptive beamforming algorithms for coherent interference suppression[C].Signal Processing Conference.IEEE,2012.

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 算法
    +關注

    關注

    23

    文章

    4631

    瀏覽量

    93427
  • 無線通信
    +關注

    關注

    58

    文章

    4608

    瀏覽量

    143959
  • 降維
    +關注

    關注

    0

    文章

    10

    瀏覽量

    7670

原文標題:【學術論文】子陣級LCMV循環(huán)優(yōu)化自適應波束形成算法研究

文章出處:【微信號:ChinaAET,微信公眾號:電子技術應用ChinaAET】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    ccd和面ccd區(qū)別

    電荷耦合器件(CCD)自20世紀70年代初問世以來,已發(fā)展成為圖像采集領域不可或缺的核心組件。其中,線CCD和面CCD作為兩種主要的CCD類型,各自擁有獨特的結構和功能特性,適用于不同的應用場景。本文將深入探討線CCD與面
    的頭像 發(fā)表于 01-29 16:27 ?186次閱讀

    基于自適應優(yōu)化的高速交叉矩陣設計

    提出了一種基于自適應優(yōu)化的交叉矩陣傳輸設計,采用AHB協(xié)議并引入自適應突發(fā)傳輸調整和自適應優(yōu)先調整的創(chuàng)新機制。通過動態(tài)調整突發(fā)傳輸?shù)拈L度和優(yōu)先分配,實現(xiàn)了對數(shù)據(jù)流的有效管理,提升了
    的頭像 發(fā)表于 01-18 10:24 ?131次閱讀

    基于梯度下降算法的三元鋰電池循環(huán)壽命預測

    不同比例、范圍的訓練集與測試集劃分?;跈C器學習的梯度下降算法對訓練集進行模型訓練,以迭代后的權重值、偏置值進行結果預測并與試驗數(shù)據(jù)進行對比。結果表明:適宜參數(shù)下的梯度下降算法可以應用于鋰離子電池循環(huán)壽命的預測,具
    的頭像 發(fā)表于 01-16 10:19 ?184次閱讀
    基于梯度下降<b class='flag-5'>算法</b>的三元鋰電池<b class='flag-5'>循環(huán)</b>壽命預測

    LabVIEW程序代做,關于噪聲測量方面,需要matlab與labview混合編程,涉及優(yōu)化算法、PID控制等,可帶價聯(lián)系

    LabVIEW程序代做,關于噪聲測量方面,需要matlab與labview混合編程,涉及優(yōu)化算法、PID控制等,可帶價聯(lián)系QQ2789223947
    發(fā)表于 12-11 17:27

    循環(huán)神經(jīng)網(wǎng)絡的優(yōu)化技巧

    循環(huán)神經(jīng)網(wǎng)絡(Recurrent Neural Networks,簡稱RNN)是一種用于處理序列數(shù)據(jù)的深度學習模型,它能夠捕捉時間序列中的動態(tài)特征。然而,RNN在訓練過程中可能會遇到梯度消失或梯度
    的頭像 發(fā)表于 11-15 09:51 ?321次閱讀

    aic3254有沒有降低環(huán)境噪聲的算法?

    請問aic3254有沒有降低環(huán)境噪聲的算法?或者有哪些算法的組合可以降低環(huán)境噪音?
    發(fā)表于 10-24 08:25

    新品 | 雙通道交錯PFC和三相變橋Easy模塊

    新品雙通道交錯PFC和三相變橋Easy模塊EasyPIM2B集成PIM模塊,帶雙通道交錯PFC和三相變橋,適用于熱泵/暖通空調應用。產(chǎn)品型號
    的頭像 發(fā)表于 07-24 08:14 ?564次閱讀
    新品 | 雙通道交錯PFC<b class='flag-5'>級</b>和三相<b class='flag-5'>逆</b>變橋Easy模塊

    循環(huán)神經(jīng)網(wǎng)絡算法原理及特點

    循環(huán)神經(jīng)網(wǎng)絡(Recurrent Neural Network,簡稱RNN)是一種具有記憶功能的神經(jīng)網(wǎng)絡,能夠處理序列數(shù)據(jù)。與傳統(tǒng)的前饋神經(jīng)網(wǎng)絡(Feedforward Neural Network
    的頭像 發(fā)表于 07-04 14:49 ?923次閱讀

    循環(huán)神經(jīng)網(wǎng)絡算法有哪幾種

    循環(huán)神經(jīng)網(wǎng)絡(Recurrent Neural Networks,簡稱RNN)是一種適合于處理序列數(shù)據(jù)的深度學習算法。與傳統(tǒng)的神經(jīng)網(wǎng)絡不同,RNN具有記憶功能,可以處理時間序列中的信息。以下是對循環(huán)
    的頭像 發(fā)表于 07-04 14:46 ?623次閱讀

    神經(jīng)網(wǎng)絡優(yōu)化算法有哪些

    神經(jīng)網(wǎng)絡優(yōu)化算法是深度學習領域中的核心技術之一,旨在通過調整網(wǎng)絡中的參數(shù)(如權重和偏差)來最小化損失函數(shù),從而提高模型的性能和效率。本文將詳細探討神經(jīng)網(wǎng)絡優(yōu)化算法的基本原理、主要方法、
    的頭像 發(fā)表于 07-03 16:01 ?657次閱讀

    絕緣形成污穢的原理及危害

    根據(jù)《電力設備絕緣及其污穢等級》(GB/T 15166-2018)標準,絕緣污穢等級分為I、II、III三個等級。其中I為不可接受的臟污,II為可接受的臟污,III
    的頭像 發(fā)表于 06-24 15:55 ?787次閱讀

    深度學習編譯工具鏈中的核心——圖優(yōu)化

    、或優(yōu)化數(shù)據(jù)流動,來提高模型推理的性能。圖優(yōu)化的出現(xiàn)很大程度上是因為算法開發(fā)人員不熟悉硬件,在算法
    的頭像 發(fā)表于 05-16 14:24 ?1100次閱讀
    深度學習編譯工具鏈中的核心——圖<b class='flag-5'>優(yōu)化</b>

    STM32F103的寄存器NVIC_IPRx搶占優(yōu)先優(yōu)先是怎么設置的?

    STM32F103的寄存器NVIC_IPRx有些不明白,搶占優(yōu)先優(yōu)先是怎么設置的? 如果,中斷分組2,搶占優(yōu)先3,優(yōu)先
    發(fā)表于 03-27 07:48

    采用端到端的設計方法實現(xiàn)多維度多通道超構表面全息設計

    近日,北京理工大學光電學院黃玲玲教授團隊采用端到端的設計方法實現(xiàn)了多維度多通道超構表面全息設計。
    的頭像 發(fā)表于 03-11 11:35 ?1307次閱讀
    采用端到端的<b class='flag-5'>逆</b>設計方法實現(xiàn)多<b class='flag-5'>維度</b>多通道超構表面全息設計

    如何對MD5加密算法優(yōu)化?

    有人針對程序安全啟動過程,進行MD5算法優(yōu)化嘛。目前采用標準算法,時間稍長,如果有人做過優(yōu)化的話,可以分享一下,謝謝。
    發(fā)表于 02-18 08:20