欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

Intel深度學(xué)習(xí)新算法SLIDE比8張NVIDIA卡快

汽車玩家 ? 來源:快科技 ? 作者:萬南 ? 2020-03-06 08:53 ? 次閱讀

AI人工智能)是當(dāng)今科技圈的熱門話題,深度學(xué)習(xí)則是AI訓(xùn)練的重要手段之一。如何學(xué)習(xí)要靠硬件和算法支撐,這方面,Intel力挺CPU,NVIDIA則力挺GPU。

日前,Intel實(shí)驗(yàn)室聯(lián)合美國(guó)萊斯大學(xué)宣布了一種突破性的深度學(xué)習(xí)新算法SLIDE。

SLIDE基于散列開發(fā),而非當(dāng)前最富盛名的BP算法(反向傳播算法)所基于的矩乘。

借助SLIDE,CPU用于傳統(tǒng)AI模型深度學(xué)習(xí)訓(xùn)練的效率大大提升。研究論文舉例稱,一套擁有44個(gè)Xeon核心的平臺(tái)和一套價(jià)值10萬美元、由8張NVIDIA Vlta V100加速卡支撐的平臺(tái)(TensorFlow框架)執(zhí)行相同的訓(xùn)練任務(wù),前者用時(shí)1小時(shí),后者則花了3.5小時(shí)。

有趣的是,Intel還表示,它們這套平臺(tái)尚未充分優(yōu)化,還是“殘血”狀態(tài),比如處理器的DLBoost并未啟用。

不過,這套44核至強(qiáng)平臺(tái)到底是什么型號(hào)CPU并未公布,一說就是22核心44線程的至強(qiáng)鉑金6238,一說是雙路至強(qiáng)鉑金6238,還有可能是未發(fā)布的產(chǎn)品

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 英特爾
    +關(guān)注

    關(guān)注

    61

    文章

    10015

    瀏覽量

    172412
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    31670

    瀏覽量

    270463
  • 英偉達(dá)
    +關(guān)注

    關(guān)注

    22

    文章

    3853

    瀏覽量

    92063
  • 深度學(xué)習(xí)
    +關(guān)注

    關(guān)注

    73

    文章

    5516

    瀏覽量

    121593
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    4G模組SD接口編程:深度學(xué)習(xí)

    今天我們需要深度學(xué)習(xí)的是4G模組SD接口編程,以我常用的模組Air724UG為例,分享給大家。
    的頭像 發(fā)表于 11-20 23:14 ?333次閱讀
    4G模組SD<b class='flag-5'>卡</b>接口編程:<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>

    NPU在深度學(xué)習(xí)中的應(yīng)用

    設(shè)計(jì)的硬件加速器,它在深度學(xué)習(xí)中的應(yīng)用日益廣泛。 1. NPU的基本概念 NPU是一種專門針對(duì)深度學(xué)習(xí)算法優(yōu)化的處理器,它與傳統(tǒng)的CPU和G
    的頭像 發(fā)表于 11-14 15:17 ?935次閱讀

    AI大模型與深度學(xué)習(xí)的關(guān)系

    人類的學(xué)習(xí)過程,實(shí)現(xiàn)對(duì)復(fù)雜數(shù)據(jù)的學(xué)習(xí)和識(shí)別。AI大模型則是指模型的參數(shù)數(shù)量巨大,需要龐大的計(jì)算資源來進(jìn)行訓(xùn)練和推理。深度學(xué)習(xí)算法為AI大模型
    的頭像 發(fā)表于 10-23 15:25 ?1368次閱讀

    FPGA做深度學(xué)習(xí)能走多遠(yuǎn)?

    的應(yīng)用場(chǎng)景。 ? 可重構(gòu)性:在深度學(xué)習(xí)高速迭代的情況下,F(xiàn)PGA 一些專用芯片(如 ASIC)具有更強(qiáng)的靈活性。當(dāng)深度學(xué)習(xí)
    發(fā)表于 09-27 20:53

    深度識(shí)別算法包括哪些內(nèi)容

    深度識(shí)別算法深度學(xué)習(xí)領(lǐng)域的一個(gè)重要組成部分,它利用深度神經(jīng)網(wǎng)絡(luò)模型對(duì)輸入數(shù)據(jù)進(jìn)行高層次的理解和識(shí)別。
    的頭像 發(fā)表于 09-10 15:28 ?488次閱讀

    NVIDIA推出全新深度學(xué)習(xí)框架fVDB

    在 SIGGRAPH 上推出的全新深度學(xué)習(xí)框架可用于打造自動(dòng)駕駛汽車、氣候科學(xué)和智慧城市的 AI 就緒型虛擬表示。
    的頭像 發(fā)表于 08-01 14:31 ?692次閱讀

    深度學(xué)習(xí)算法在嵌入式平臺(tái)上的部署

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)算法在各個(gè)領(lǐng)域的應(yīng)用日益廣泛。然而,將深度學(xué)習(xí)算法部署到資源
    的頭像 發(fā)表于 07-15 10:03 ?1742次閱讀

    深度學(xué)習(xí)算法在集成電路測(cè)試中的應(yīng)用

    隨著半導(dǎo)體技術(shù)的快速發(fā)展,集成電路(IC)的復(fù)雜性和集成度不斷提高,對(duì)測(cè)試技術(shù)的要求也日益增加。深度學(xué)習(xí)算法作為一種強(qiáng)大的數(shù)據(jù)處理和模式識(shí)別工具,在集成電路測(cè)試領(lǐng)域展現(xiàn)出了巨大的應(yīng)用潛力。本文將從
    的頭像 發(fā)表于 07-15 09:48 ?1194次閱讀

    利用Matlab函數(shù)實(shí)現(xiàn)深度學(xué)習(xí)算法

    在Matlab中實(shí)現(xiàn)深度學(xué)習(xí)算法是一個(gè)復(fù)雜但強(qiáng)大的過程,可以應(yīng)用于各種領(lǐng)域,如圖像識(shí)別、自然語言處理、時(shí)間序列預(yù)測(cè)等。這里,我將概述一個(gè)基本的流程,包括環(huán)境設(shè)置、數(shù)據(jù)準(zhǔn)備、模型設(shè)計(jì)、訓(xùn)練過程、以及測(cè)試和評(píng)估,并提供一個(gè)基于Mat
    的頭像 發(fā)表于 07-14 14:21 ?2460次閱讀

    深度學(xué)習(xí)中的無監(jiān)督學(xué)習(xí)方法綜述

    應(yīng)用中往往難以實(shí)現(xiàn)。因此,無監(jiān)督學(xué)習(xí)深度學(xué)習(xí)中扮演著越來越重要的角色。本文旨在綜述深度學(xué)習(xí)中的無監(jiān)督學(xué)
    的頭像 發(fā)表于 07-09 10:50 ?974次閱讀

    深度學(xué)習(xí)的基本原理與核心算法

    處理、語音識(shí)別等領(lǐng)域取得了革命性的突破。本文將詳細(xì)闡述深度學(xué)習(xí)的原理、核心算法以及實(shí)現(xiàn)方式,并通過一個(gè)具體的代碼實(shí)例進(jìn)行說明。
    的頭像 發(fā)表于 07-04 11:44 ?2538次閱讀

    深度學(xué)習(xí)模型訓(xùn)練過程詳解

    深度學(xué)習(xí)模型訓(xùn)練是一個(gè)復(fù)雜且關(guān)鍵的過程,它涉及大量的數(shù)據(jù)、計(jì)算資源和精心設(shè)計(jì)的算法。訓(xùn)練一個(gè)深度學(xué)習(xí)模型,本質(zhì)上是通過優(yōu)化
    的頭像 發(fā)表于 07-01 16:13 ?1542次閱讀

    深度學(xué)習(xí)芯片組行業(yè)市場(chǎng)規(guī)模分析及發(fā)展趨勢(shì)預(yù)測(cè)報(bào)告

    增長(zhǎng)率CAGR為 35.5%。NVIDIA、Intel和IBM是深度學(xué)習(xí)芯片組行業(yè)的領(lǐng)跑企業(yè),總共約占50%的市場(chǎng)份額。美國(guó)地區(qū)是全球市場(chǎng)的主要地區(qū),占據(jù)了大約70%的市場(chǎng)份額。
    的頭像 發(fā)表于 06-18 10:27 ?370次閱讀

    深度解析深度學(xué)習(xí)下的語義SLAM

    隨著深度學(xué)習(xí)技術(shù)的興起,計(jì)算機(jī)視覺的許多傳統(tǒng)領(lǐng)域都取得了突破性進(jìn)展,例如目標(biāo)的檢測(cè)、識(shí)別和分類等領(lǐng)域。近年來,研究人員開始在視覺SLAM算法中引入深度
    發(fā)表于 04-23 17:18 ?1393次閱讀
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>下的語義SLAM

    為什么深度學(xué)習(xí)的效果更好?

    ,這些原則和進(jìn)步協(xié)同作用使這些模型異常強(qiáng)大。本文探討了深度學(xué)習(xí)成功背后的核心原因,包括其學(xué)習(xí)層次表示的能力、大型數(shù)據(jù)集的影響、計(jì)算能力的進(jìn)步、算法創(chuàng)新、遷移
    的頭像 發(fā)表于 03-09 08:26 ?698次閱讀
    為什么<b class='flag-5'>深度</b><b class='flag-5'>學(xué)習(xí)</b>的效果更好?