1989年,SONY公司研究發(fā)現(xiàn)可以用石油焦碳材料替代金屬鋰制作二次電池,真正拉開(kāi)了鋰離子電池規(guī)?;瘧?yīng)用的序幕,負(fù)極材料的研究也自此開(kāi)始。之后30年時(shí)間里,已經(jīng)先后有碳、鈦酸鋰、硅基材料等三代產(chǎn)品作為負(fù)極材料使用。
文中將根據(jù)負(fù)極材料的結(jié)構(gòu)分類(lèi),分別簡(jiǎn)要介紹各種鋰離子電池負(fù)極材料的結(jié)構(gòu)特征、性能特點(diǎn)、改進(jìn)方向等方面研發(fā)進(jìn)展,重點(diǎn)關(guān)注下一代高能量密度電池負(fù)極材料的發(fā)展現(xiàn)狀和未來(lái)趨勢(shì)。
一、碳材料
碳材料是當(dāng)今商業(yè)化應(yīng)用最廣泛、最普遍的負(fù)極材料,主要包括天然石墨、人造石墨、硬碳、軟碳、MCNB(中間相碳微球),在下一代負(fù)極材料成熟之前,碳材料特別是石墨材料仍將是負(fù)極材料的首選和主流。
1.1 石墨
石墨根據(jù)其原料和加工工藝的區(qū)別,分為天然石墨和人造石墨,因其具有對(duì)鋰電位低、首次效率高、循環(huán)穩(wěn)定性好、成本低廉等優(yōu)點(diǎn),石墨成為目前鋰離子電池應(yīng)用中理想的負(fù)極材料。
天然石墨:一般采用天然鱗片石墨為原料,經(jīng)過(guò)改性處理制成球形天然石墨使用。天然石墨雖然應(yīng)用廣泛,但存在幾個(gè)缺點(diǎn):①天然石墨表面缺陷多,比表面積大,首次效率較低;②采用PC基電解液,有嚴(yán)重的溶劑化鋰離子共嵌入現(xiàn)象,導(dǎo)致石墨層膨 脹剝離,電池性能失效;③天然石墨具有強(qiáng)烈的各向異性,鋰離子僅能從端面嵌入,倍率性能差易析鋰。
天然石墨的改性:
①針對(duì)天然石墨表面缺陷多和電解液耐受性差的問(wèn)題,采用不同的表面活性劑進(jìn)行改性。CHENG等通過(guò)強(qiáng)堿(KOH)水溶液刻蝕后高溫?zé)o氧氣氛燒結(jié)的方式,改變孔隙結(jié)構(gòu)表面,增加石墨表面微孔和嵌鋰路徑的方式改善天然石墨倍率性能。WU等采用不同強(qiáng)氧化劑溶液進(jìn)行氧化處理,鈍化表面活性電位和還原性官能團(tuán),改善天然石墨首次效率。MATSUMOTU等采用ClF3對(duì)天然石墨進(jìn)行氟化處理,發(fā)現(xiàn)充放電倍率和循環(huán)壽命均有效提高。另一種處理方式是進(jìn)行包覆改性,將天然石墨無(wú)定形碳包覆,構(gòu)建“核-殼”結(jié)構(gòu)顆粒,通常無(wú)定形碳的碳源為瀝青、酚醛樹(shù)脂等低溫?zé)峤馓疾牧希紝拥拇嬖诓坏芨艚^電解液的直接接觸,減少顆粒表面活性點(diǎn),降低比表面積,另外由于碳層較大的層間距,還能降低界面阻抗,提高鋰離子嵌入擴(kuò)散能力;
②針對(duì)天然石墨強(qiáng)烈各向異性的問(wèn)題,工業(yè)生產(chǎn)中常采用機(jī)械處理的手段對(duì)顆粒形貌進(jìn)行球形化整形,氣流整形機(jī)采用風(fēng)力沖擊的方式使顆粒之間相互摩擦,切削顆粒棱角,此方法不會(huì)引入摻雜雜質(zhì),球化效率高,但會(huì)導(dǎo)致大量顆粒粉化,產(chǎn)率低。機(jī)械融合機(jī)則利用物料在轉(zhuǎn)子中高速旋轉(zhuǎn),在離心力的作用下緊貼器壁,在轉(zhuǎn)子和定子擠壓頭之間高速穿過(guò)。在這個(gè)瞬間,物料同時(shí)受到擠壓力和剪切力的作用,在顆粒與顆粒之間及顆粒與設(shè)備之間摩擦力的作用下,表面呈現(xiàn)一種機(jī)械熔融狀態(tài),達(dá)到球形化的目的。天然石墨經(jīng)過(guò)球形化處理,粒徑D50范圍15~20μm,首次效率和循環(huán)性能明顯改善,倍率性能大幅提升。
人造石墨:一般采用致密的石油焦或針狀焦作為前驅(qū)體制成,避免了天然石墨的表面缺陷,但仍存在因晶體各向異性導(dǎo)致倍率性能差,低溫性能差,充電易析鋰等問(wèn)題。人造石墨改性方式不同于天然石墨,一般通過(guò)顆粒結(jié)構(gòu)的重組實(shí)現(xiàn)降低石墨晶粒取向度(OI值)的目的。通常選取直徑8~10μm的針狀焦前驅(qū)體,采用瀝青等易石墨化材料作為粘結(jié)劑的碳源,通過(guò)滾筒爐處理,使數(shù)個(gè)針狀焦顆粒粘合,制成粒徑D50范圍14~18μm的二次顆粒后完成石墨化,有效降低材料OI值。
1.2 軟碳
軟碳又稱(chēng)為易石墨化碳材料,是指在2500℃以上的高溫下能石墨化的無(wú)定形碳材料。一般而言,根據(jù)前驅(qū)體燒結(jié)溫度的區(qū)別,軟碳會(huì)產(chǎn)生3種不同的晶體結(jié)構(gòu),分別是無(wú)定形結(jié)構(gòu)、湍層無(wú)序結(jié)構(gòu)和石墨結(jié)構(gòu),石墨結(jié)構(gòu)也就是常見(jiàn)的人造石墨。其中無(wú)定形結(jié)構(gòu)由于結(jié)晶度低,層間距大,與電解液相容性好,因此低溫性能優(yōu)異,倍率性能良好,從而受到人們的廣泛關(guān)注。
軟碳首次充放電時(shí)不可逆容量較高,輸出電壓較低,無(wú)明顯的充放電平臺(tái),因此一般不獨(dú)立作為負(fù)極材料使用,通常作為負(fù)極材料包覆物或者組分使用。劉萍等在石墨負(fù)極中摻雜一定比例的軟碳,發(fā)現(xiàn)可以改善電池的低溫充電性能,且摻雜含量越高,低溫充電性能越好,但循環(huán)性能后期則有所下降,經(jīng)試驗(yàn)論證,摻雜20%的軟碳能夠?qū)崿F(xiàn)低溫充電和循環(huán)壽命的性能平衡。
1.3 硬碳
硬碳又稱(chēng)難石墨化碳材料,在2500℃以上的高溫也難以石墨化,一般是前驅(qū)體經(jīng)500~1200℃范圍內(nèi)熱處理得來(lái)。常見(jiàn)的硬碳有樹(shù)脂碳、有機(jī)聚合物熱解碳、炭黑、生物質(zhì)碳等4類(lèi),其中酚醛樹(shù)脂在800℃熱解,可得到硬碳材料,其首次充電克容量可達(dá) 800mAh/g,層間距d002>0.37nm(石墨為0.3354nm),大的層間距有利于鋰離子的嵌入和脫嵌,因此硬碳具有極好的充放電性能,正成為負(fù)極材料新的研究熱點(diǎn)。但是硬碳首次不可逆容量很高,電壓平臺(tái)滯后,壓實(shí)密度低,容易產(chǎn)氣也是其不可忽視的缺點(diǎn)。
硬碳在應(yīng)用主要是考慮與正極材料的匹配,LIU等研究了以富鋰材料為正極材料、硬碳為負(fù)極材料的鋰離子電池性能,發(fā)現(xiàn)兩種材料的匹配有助于降低各自的首次不可逆容量。LIAO等以硬碳為負(fù)極材料、LFP為正極材料制備的鋰離子電池顯示出良好的倍率性能和循環(huán)性能,10℃循環(huán)2000次容量保持率仍超過(guò)60%。
二、鈦酸鋰材料
2.1 材料的優(yōu)缺點(diǎn)
鈦酸鋰材料:鈦酸鋰(LTO)是一種由金屬鋰和低電位過(guò)渡金屬鈦組成的復(fù)合氧化物,屬于AB2X4系列的尖晶石型固溶體。鈦酸鋰的理論克容量175mAh/g,實(shí)際克容量大于160mAh/g,是目前已經(jīng)產(chǎn)業(yè)化的負(fù)極材料之一。
獨(dú)特的優(yōu)點(diǎn):
①零應(yīng)變性:鈦酸鋰晶胞參數(shù)a=0.836nm,充放電時(shí)鋰離子的嵌入脫出對(duì)其晶型結(jié)構(gòu)幾乎不產(chǎn)生影響,避免了充放電過(guò)程中材料伸縮導(dǎo)致的結(jié)構(gòu)變化,從而具有極高的電化學(xué)穩(wěn)定性和循環(huán)壽命;
②無(wú)析鋰風(fēng)險(xiǎn):鈦酸鋰對(duì)鋰電位高達(dá)1.55V,首次充電不形成SEI膜,首次效率高,熱穩(wěn)定性好,界面阻抗低,低溫充電性能優(yōu)異,可-40℃充電;
③三維快離子導(dǎo)體:鈦酸鋰是三維尖晶石結(jié)構(gòu),嵌鋰空間遠(yuǎn)大于石墨層間距,離子電導(dǎo)比石墨材料高一個(gè)數(shù)量級(jí),特別適合大倍率充放電。
缺點(diǎn):
鈦酸鋰也因?yàn)榭巳萘康停妷浩脚_(tái)低導(dǎo)致電池比能量低;納米化材料,吸濕性強(qiáng),導(dǎo)致高溫產(chǎn)氣嚴(yán)重,高溫循環(huán)差;材料制程工藝復(fù)雜,成本極高,電芯成本是相同能量磷酸鐵鋰電池的3倍以上。
2.2 材料的應(yīng)用與注意事項(xiàng)
應(yīng)用領(lǐng)域:鈦酸鋰的優(yōu)缺點(diǎn)都非常明顯,各項(xiàng)性能都比較極端,因此應(yīng)用于特定的細(xì)分領(lǐng)域,充分發(fā)揮其特長(zhǎng),才是正確的應(yīng)用方法。目前鈦酸鋰電池主要應(yīng)用于城市純電動(dòng)BRT公交車(chē),電氣混合動(dòng)力公交車(chē),電力調(diào)頻調(diào)峰輔助服務(wù)等領(lǐng)域。
注意事項(xiàng):針對(duì)鈦酸鋰高溫產(chǎn)氣嚴(yán)重的問(wèn)題,目前工業(yè)生產(chǎn)中需要嚴(yán)格控制環(huán)境濕度和操作時(shí)水分引入等;電解液增加新型添加劑,抑制鈦酸鋰與電解液界面發(fā)生副反應(yīng);提高原材料的純度,避免制造過(guò)程中引入雜質(zhì)。
三、硅基材料
3.1 研究熱點(diǎn)與改進(jìn)方向
研究熱點(diǎn):硅被認(rèn)為是最有前景的負(fù)極材料之一,其理論克容量可達(dá)4200mAh/g,超過(guò)石墨材料10倍以上,同時(shí)Si的嵌鋰電位高于碳材料,充電析鋰風(fēng)險(xiǎn)小,更加安全。目前硅基材料的研究熱點(diǎn)分為兩個(gè)方向,分別是納米硅碳材料和硅氧(SiOx)負(fù)極材料。
應(yīng)用難題:①脫嵌鋰帶來(lái)的巨大的體積膨脹和收縮而導(dǎo)致的顆粒破碎粉化及電極結(jié)構(gòu)破壞,造成電化學(xué)性能失效;②由于膨脹收縮帶來(lái)的SEI膜不斷破壞重組,持續(xù)消耗電解液和可逆鋰源導(dǎo)致電極容量衰減加速,充放電效率急劇降低。
改進(jìn)的方向:針對(duì)以上問(wèn)題,學(xué)者們近年來(lái)不斷探索新方法改善硅負(fù)極材料性能,目前的主流方向是采用石墨作為基體,摻入質(zhì)量分?jǐn)?shù)5%~10%的納米硅或SiOx組成復(fù)合材料并進(jìn)行碳包覆,抑制顆粒體積變化,提高循環(huán)穩(wěn)定性。
3.2 納米硅碳材料
材料設(shè)計(jì):最初納米硅碳材料研究主要聚焦于400~500mAh/g的低容量方向,材料結(jié)構(gòu)主要有核殼型和包埋型兩種。李泓團(tuán)隊(duì)在設(shè)計(jì)之初就考慮盡可能提高基體石墨含量,緩解脫嵌鋰應(yīng)變,降低反彈;另外,優(yōu)選表面包覆劑種類(lèi)、含量和燒結(jié)工藝,提高包覆層完整性,引入液相分散工藝,提高分散均勻性,更好的發(fā)揮納米硅尺寸效應(yīng)。
優(yōu)化電池化學(xué)體系:除材料設(shè)計(jì)以外,還通過(guò)研究粘結(jié)劑、導(dǎo)電劑和電解液優(yōu)化電池化學(xué)體系,400mAh/g硅碳材料600次循環(huán)容量保持率80%以上,在此基礎(chǔ)上,通過(guò)優(yōu)化顆粒結(jié)構(gòu),開(kāi)發(fā)高功率型材料。目前業(yè)內(nèi)使用低容量材料制成的鋰離子電池已經(jīng)實(shí)現(xiàn)量產(chǎn),但從實(shí)際結(jié)果來(lái)看,對(duì)電池比能量提升極為有限。
摻雜納米硅制備工藝:高容量硅碳負(fù)極由于石墨含量少,研究重點(diǎn)在于硅顆粒體積膨脹帶來(lái)得循環(huán)穩(wěn)定性和充放電效率差的問(wèn)題,同時(shí)還需應(yīng)對(duì)分散困難和加工性能差的新問(wèn)題。李泓課題組從原材料出發(fā),開(kāi)發(fā)了一套低成本、高效率的摻雜納米硅制備工藝,輔以氣相包覆手段,降低了材料比表面積,改善了其表面特性和加工性能。與石墨摻混制成500mAh/g的負(fù)極材料,在應(yīng)用過(guò)程中適當(dāng)降低壓實(shí)密度,500個(gè)循環(huán)容量保持率可達(dá)80%。
復(fù)合材料的制備工藝:李泓團(tuán)隊(duì)還研發(fā)出一種大規(guī)模硅碳復(fù)合材料的制備工藝,采用微納復(fù)合結(jié)構(gòu),使納米硅均勻分散在三維導(dǎo)電網(wǎng)絡(luò)中。與寧波材料所合作,經(jīng)與石墨摻混制成600mAh/g的負(fù)極材料,正極選取富鋰相材料,研制出的軟包電池能量密度高達(dá)374Wh/kg。
3.3 SiOx材料
補(bǔ)鋰:SiOx材料可逆容量高達(dá)1500-2000mAh/g,同時(shí)其嵌鋰過(guò)程中的體積膨脹僅為120%(納米硅材料可達(dá)300%以上),從而極大地提升了Si基材料的循環(huán)壽命。然而SiO材料Li在首次嵌入的過(guò)程中,會(huì)生成沒(méi)有電化學(xué)活性的Li4SiO4,導(dǎo)致SiOx材料的首次效率遠(yuǎn)遠(yuǎn)低于石墨和硅碳材料,這也成為了SiOx材料應(yīng)用的主要障礙,因此,針對(duì)SiOx材料的研究主要集中在如何降低首次不可逆容量上。研究人員為此開(kāi)發(fā)出不同的補(bǔ)鋰方法,試圖補(bǔ)償首次充電過(guò)程負(fù)極消耗的活性鋰。
造粒:復(fù)旦大學(xué)YUZHANG等人通過(guò)球磨的方法將SiO、MgO和Si材料進(jìn)行研磨混合得到納米尺度的顆粒,并利用噴霧干燥進(jìn)行造粒,制得的復(fù)合材料中的MgO成分與SiOx材料中的SiO2反應(yīng)生成MgSiO3,大大減少首次嵌鋰的不可逆損失,SiOx材料的首次效率提升8%以上。該材料的制備方法簡(jiǎn)單高效,具有規(guī)?;a(chǎn)的潛力。
鋰離子預(yù)嵌入:ZHAO等人報(bào)道了采用惰性金屬鋰粉(SLMP)直接均一地分散在硅氧電極表面,經(jīng)輥壓活化和電解液的浸潤(rùn),SLMP脫出鋰離子預(yù)嵌入硅氧電極,大大提高了首次庫(kù)倫效率和放電比容量。
電化學(xué)預(yù)鋰:CHOI課題組開(kāi)發(fā)出一種精確的電化學(xué)預(yù)鋰化方法,采用外電路短路的方式,其預(yù)鋰化程度和電壓可以實(shí)時(shí)監(jiān)測(cè),因此嵌鋰量可有效控制,避免鋰沉積,隔膜的存在,有助于均勻嵌鋰,形成穩(wěn)定的SEI膜。經(jīng)預(yù)鋰化后,與NCA組成全電池首次庫(kù)倫效率可達(dá)85.34%,循環(huán)穩(wěn)定性也有改善。
研制方向:SiOx材料的預(yù)鋰化工藝由于對(duì)環(huán)境的高要求,還停留在實(shí)驗(yàn)室階段,無(wú)法規(guī)?;瘧?yīng)用。因此后續(xù)的研究重點(diǎn)將主要集中在正極材料預(yù)鋰化和SiOx材料制成預(yù)鋰化等方向。
四、總結(jié)
本文總結(jié)了各類(lèi)鋰離子電池負(fù)極材料的結(jié)構(gòu)特征、功能特點(diǎn),綜述了各類(lèi)負(fù)極材料在鋰離子電池中的最新研究進(jìn)展。經(jīng)過(guò)研究人員不斷換代和改性,目前硅基材料已經(jīng)成為最有前景的下一代負(fù)極材料,但本征存在的體積膨脹大、循環(huán)性能差的特點(diǎn),限制 了大規(guī)模應(yīng)用,近年來(lái)提出的改性方法大都存在工藝復(fù)雜、成本高昂的問(wèn)題。這要求研究人員應(yīng)不斷加強(qiáng)對(duì)基礎(chǔ)原理的理解,開(kāi)發(fā)簡(jiǎn)單高效的手段制備復(fù)合納米硅基材料,著眼于低膨脹、高首效、大倍率、安全友好的鋰離子電池開(kāi)發(fā),以期硅負(fù)極早日替代石墨,在電動(dòng)汽車(chē)領(lǐng)域?qū)崿F(xiàn)應(yīng)用突破。
參考:劉琪等《鋰離子電池負(fù)極材料的研究進(jìn)展》
原文標(biāo)題:鋰離子電池負(fù)極(碳材料、鈦酸鋰、硅基材料)的研究進(jìn)展概述
文章出處:【微信公眾號(hào):鋰電聯(lián)盟會(huì)長(zhǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
責(zé)任編輯:haq
-
鋰電池
+關(guān)注
關(guān)注
260文章
8191瀏覽量
171837 -
充電
+關(guān)注
關(guān)注
23文章
1333瀏覽量
94906
原文標(biāo)題:鋰離子電池負(fù)極(碳材料、鈦酸鋰、硅基材料)的研究進(jìn)展概述
文章出處:【微信號(hào):Recycle-Li-Battery,微信公眾號(hào):鋰電聯(lián)盟會(huì)長(zhǎng)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
一種高能量密度水系有機(jī)液流電池
![<b class='flag-5'>一</b>種<b class='flag-5'>高能量</b><b class='flag-5'>密度</b>水系有機(jī)液流<b class='flag-5'>電池</b>](https://file1.elecfans.com/web3/M00/07/71/wKgZO2elqf2ADVuiAABV0g7__sk192.png)
北京大學(xué):解讀鋰電池中質(zhì)子角色
![北京大學(xué):解讀鋰<b class='flag-5'>電池</b>中質(zhì)子角色](https://file1.elecfans.com/web3/M00/05/18/wKgZPGd8zyWAaHtRAAALoc_3WOo361.png)
欣界能源發(fā)布全球首創(chuàng)480Wh/kg高能量鋰金屬固態(tài)電池
蓄電池技術(shù)進(jìn)步與未來(lái)展望
三元鋰電池行業(yè)發(fā)展趨勢(shì)
醫(yī)療機(jī)器人發(fā)展現(xiàn)狀與趨勢(shì)
工控機(jī)廠(chǎng)家發(fā)展現(xiàn)狀及未來(lái)趨勢(shì)
![工控機(jī)廠(chǎng)家<b class='flag-5'>發(fā)展現(xiàn)狀</b>及<b class='flag-5'>未來(lái)</b><b class='flag-5'>趨勢(shì)</b>](https://file1.elecfans.com/web2/M00/09/74/wKgaomb4wuuAVBEXAAAqTx2zpDc121.png)
KLA納米壓痕儀對(duì)電池材料的測(cè)量
![KLA納米壓痕儀對(duì)<b class='flag-5'>電池</b><b class='flag-5'>材料</b>的測(cè)量](https://file1.elecfans.com/web2/M00/08/C7/wKgaombzdgWAF7P4AAGQe_dirQo842.png)
24芯M16插頭在下一代技術(shù)中的潛力
![24芯M16插頭在<b class='flag-5'>下一代</b>技術(shù)中的潛力](https://file1.elecfans.com/web2/M00/C7/C5/wKgaomYNDb-APj1XAADMmxdUgA0497.png)
評(píng)論