欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

神經(jīng)網(wǎng)絡(luò)與感知機的不同講解

工程師鄧生 ? 來源:51cto ? 作者:梁唐 ? 2020-11-30 16:51 ? 次閱讀

大家好,今天來繼續(xù)聊聊深度學(xué)習(xí)。

有同學(xué)跟我說很久沒有更新深度學(xué)習(xí)的模型了,倒不是不愿意更新,主要是一次想把一個技術(shù)專題寫完。但是純技術(shù)文章觀眾老爺們不太愛看,所以我一般都把純技術(shù)文章放在次條。不過既然有同學(xué)催更,那么我還是響應(yīng)一下需求,來更新一篇。

神經(jīng)網(wǎng)絡(luò)與感知機的不同

我們當時在文章里放了一張圖,這張圖是一個多層感知機的圖,大家看一下,就是下面這張圖。

這張圖乍一看沒什么問題,但是細想會覺得有點奇怪,好像我們印象里看到的神經(jīng)網(wǎng)絡(luò)的圖片也是這樣的,既然如此,那么它們之間有什么區(qū)別呢?

表面上最明顯的區(qū)別就是名字不同,這是一張神經(jīng)網(wǎng)絡(luò)的圖片。我們發(fā)現(xiàn)同樣是三層,但是它每一層的名字分別是輸入層、中間層(隱藏層)和輸出層。我們一般把輸入層和輸出層單獨命名,中間的若干層都叫做隱藏層或者是中間層。當然像是感知機一樣,以數(shù)字來命名層數(shù)也是可以的,比如下圖當中的輸入層叫做第0層,中間層叫做第一層,最后輸出層叫做第2層。

我們一般不把輸出層看作是有效的神經(jīng)網(wǎng)絡(luò),所以下圖的網(wǎng)絡(luò)被稱為二層神經(jīng)網(wǎng)絡(luò),而不是三層神經(jīng)網(wǎng)絡(luò)。

除了名字的叫法不同之外,還有一個最關(guān)鍵的區(qū)別就是激活函數(shù),為了說明白這點,我們先來看看神經(jīng)網(wǎng)絡(luò)當中的信號傳遞。

信號傳遞

下圖是一張我隨便找來的神經(jīng)網(wǎng)絡(luò)圖,我們可以看到輸入的第一個節(jié)點被置為了1。這樣做是為了方便引入偏移量,只是我們一般情況下畫圖的時候,不會特意把偏移量畫出來。我們以下圖為例子來看下神經(jīng)網(wǎng)絡(luò)當中信號的傳遞方式。

到這里還沒有結(jié)束,神經(jīng)網(wǎng)絡(luò)當中每一層都會有對應(yīng)的激活函數(shù)。一般情況下同一層網(wǎng)絡(luò)當中的激活函數(shù)相同,我們把它叫做h,所以最終這個節(jié)點的輸出并不是剛剛得到的,而是。

激活函數(shù)我們已經(jīng)比較熟悉了,之前介紹過很多次,常用的大概有以下幾種:Relu、Sigmoid、tanh、softmax,以及一些衍生出的變種。一般情況下,在輸出層之前我們通常使用Relu,如果模型是一個分類模型,我們會在最后使用Sigmoid或者是softmax,如果是回歸模型則不使用任何激活函數(shù)。

Sigmoid我們已經(jīng)很熟悉了,如果我們把LR模型也看成是一個單層的神經(jīng)網(wǎng)絡(luò)的話,那么Sigmoid就是它的激活函數(shù)。Sigmoid應(yīng)用在二分類場景當中單個的輸出節(jié)點上,輸出的值如果大于0.5表示為真,否則為假。在一些概率預(yù)估場景當中,也可以認為輸出值就代表了事件發(fā)生的概率。

與之對應(yīng)的是softmax函數(shù),它應(yīng)用在多分類問題當中,它應(yīng)用的節(jié)點數(shù)量不是1個,而是k個。這里的k表示多分類場景當中的類別數(shù)量。我們以k=3舉例,看下圖:

在圖中一共有三個節(jié)點,對于每一個節(jié)點來說,它的公式可以寫成:

其實和Sigmoid的計算方式是一樣的,只不過最后計算了一個權(quán)重。最后我們會在這k個節(jié)點當中選擇最大的作為最終的分類結(jié)果。

代碼實現(xiàn)

最后,我們來試著寫一下神經(jīng)網(wǎng)絡(luò)的代碼,由于現(xiàn)在我們還沒有介紹神經(jīng)網(wǎng)絡(luò)的訓(xùn)練方法,所以我們只能實現(xiàn)它預(yù)測的部分。等我們介紹完了反向傳播算法之后,再來補上模型訓(xùn)練的過程。

如果不考慮反向傳播的話,其實整個算法的代碼非常簡單,只要熟悉Python語法的同學(xué)都能看懂。

import numpy as np def relu(x): return np.where(x 》 0, x, 0) def sigmoid(x): return 1 / (1 + np.exp(-x)) class NeuralNetwork(): def __init__(self): self.params = {} self.params[‘W1’] = np.random.rand(2, 3) self.params[‘b1’] = np.random.rand(1, 3) self.params[‘W2’] = np.random.rand(3, 2) self.params[‘b2’] = np.random.rand(1, 2) self.params[‘W3’] = np.random.rand(2, 1) self.params[‘b3’] = np.random.rand(1, 1) def forward(self, x): a1 = np.dot(x, self.params[‘W1’]) + self.params[‘b1’] z1 = relu(a1) a2 = np.dot(z1, self.params[‘W2’]) + self.params[‘b2’] z2 = relu(a2) a3 = np.dot(z2, self.params[‘W3’]) + self.params[‘b3’] return np.where(sigmoid(a3) 》 0.5, 1, 0) if __name__ == “__main__”: nn = NeuralNetwork() print(nn.forward(np.array([3, 2])))

責(zé)任編輯:PSY

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
收藏 人收藏

    評論

    相關(guān)推薦

    多層感知神經(jīng)網(wǎng)絡(luò)的區(qū)別

    多層感知(Multilayer Perceptron, MLP)與神經(jīng)網(wǎng)絡(luò)之間的區(qū)別,實際上在一定程度上是特殊與一般的關(guān)系。多層感知
    的頭像 發(fā)表于 07-11 17:23 ?2297次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種在人工智能和機器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?1757次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡稱ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及未來發(fā)展等多個方面,詳細闡述BP
    的頭像 發(fā)表于 07-10 15:20 ?1334次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?672次閱讀

    人工神經(jīng)網(wǎng)絡(luò)模型包含哪些層次

    人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Network,ANN)是一種模擬人腦神經(jīng)網(wǎng)絡(luò)的計算模型,具有自適應(yīng)、自學(xué)習(xí)、泛化能力強等特點。本文將詳細介紹人工神經(jīng)網(wǎng)絡(luò)模型的各個層次,包括
    的頭像 發(fā)表于 07-05 09:17 ?732次閱讀

    人工神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練的基本原理

    圖像識別、語音識別、自然語言處理等。本文將介紹人工神經(jīng)網(wǎng)絡(luò)模型訓(xùn)練的基本原理。 1. 神經(jīng)網(wǎng)絡(luò)的基本概念 1.1 神經(jīng)神經(jīng)元是神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-05 09:16 ?833次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡稱RNN)實際上是同一個概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?897次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)領(lǐng)域中兩種非常重要的神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 14:24 ?1524次閱讀

    深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指傳統(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時,我們需要從多個維度進行深入分析。這些維度包括
    的頭像 發(fā)表于 07-04 13:20 ?1074次閱讀

    人工智能神經(jīng)網(wǎng)絡(luò)模型有哪些

    人工智能神經(jīng)網(wǎng)絡(luò)模型是一類受人腦啟發(fā)的計算模型,它們在許多領(lǐng)域都取得了顯著的成功。以下是一些常見的神經(jīng)網(wǎng)絡(luò)模型: 感知(Perceptron) :
    的頭像 發(fā)表于 07-04 09:41 ?753次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    反向傳播神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network,簡稱BP神經(jīng)網(wǎng)絡(luò))是一種多層前饋神經(jīng)網(wǎng)絡(luò),它通過反向傳播算法來調(diào)整網(wǎng)絡(luò)中的權(quán)重和偏置,以達到最小化誤差的
    的頭像 發(fā)表于 07-03 11:00 ?879次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡稱CNN)是兩種不同類型的人工神經(jīng)網(wǎng)絡(luò),它們在
    的頭像 發(fā)表于 07-03 10:12 ?1388次閱讀

    神經(jīng)網(wǎng)絡(luò)算法的結(jié)構(gòu)有哪些類型

    : 多層感知器(MLP) 多層感知器是最基本和最簡單的神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu),它由輸入層、隱藏層和輸出層組成。每個神經(jīng)元都通過權(quán)重和偏置與前一層的神經(jīng)
    的頭像 發(fā)表于 07-03 09:50 ?550次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡稱CNN)和BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Networks,簡稱BPNN)是兩種
    的頭像 發(fā)表于 07-02 14:24 ?4786次閱讀

    深度神經(jīng)網(wǎng)絡(luò)模型有哪些

    模型: 多層感知器(Multilayer Perceptron,MLP): 多層感知器是最基本的深度神經(jīng)網(wǎng)絡(luò)模型,由多個全連接層組成。每個隱藏層的神經(jīng)元數(shù)量可以不同,通常使用激活函數(shù)如
    的頭像 發(fā)表于 07-02 10:00 ?1662次閱讀