欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線(xiàn)課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

自動(dòng)機(jī)器學(xué)習(xí)簡(jiǎn)述

電子設(shè)計(jì) ? 來(lái)源: 電子設(shè)計(jì) ? 作者: 電子設(shè)計(jì) ? 2020-12-26 10:56 ? 次閱讀

轉(zhuǎn)載本文需注明出處:微信公眾號(hào)EAWorld,違者必究。

目錄:

一、為什么需要自動(dòng)機(jī)器學(xué)習(xí)

二、超參數(shù)優(yōu)化 Hyper-parameter Optimization

三、元學(xué)習(xí) Meta Learning

四、神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索 Neural Architecture Search

五、自動(dòng)化特征工程

六、其它自動(dòng)機(jī)器學(xué)習(xí)工具集

一、為什么需要自動(dòng)機(jī)器學(xué)習(xí)

對(duì)于機(jī)器學(xué)習(xí)的新用戶(hù)而言,使用機(jī)器學(xué)習(xí)算法的一個(gè)主要的障礙就是算法的性能受許多的設(shè)計(jì)決策影響。隨著深度學(xué)習(xí)的流行,工程師需要選擇相應(yīng)的神經(jīng)網(wǎng)絡(luò)架構(gòu),訓(xùn)練過(guò)程,正則化方法,超參數(shù)等等,所有的這些都對(duì)算法的性能有很大的影響。于是深度學(xué)習(xí)工程師也被戲稱(chēng)為調(diào)參工程師。

自動(dòng)機(jī)器學(xué)習(xí)(AutoML)的目標(biāo)就是使用自動(dòng)化的數(shù)據(jù)驅(qū)動(dòng)方式來(lái)做出上述的決策。用戶(hù)只要提供數(shù)據(jù),自動(dòng)機(jī)器學(xué)習(xí)系統(tǒng)自動(dòng)的決定最佳的方案。領(lǐng)域?qū)<也辉傩枰鄲烙趯W(xué)習(xí)各種機(jī)器學(xué)習(xí)的算法。

自動(dòng)機(jī)器學(xué)習(xí)不光包括大家熟知的算法選擇,超參數(shù)優(yōu)化,和神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索,還覆蓋機(jī)器學(xué)習(xí)工作流的每一步:

自動(dòng)準(zhǔn)備數(shù)據(jù)

自動(dòng)特征選擇

自動(dòng)選擇算法

超參數(shù)優(yōu)化

自動(dòng)流水線(xiàn)/工作流構(gòu)建

神經(jīng)網(wǎng)絡(luò)架構(gòu)搜索

自動(dòng)模型選擇和集成學(xué)習(xí)

二、超參數(shù)優(yōu)化

Hyper-parameter Optimization

學(xué)習(xí)器模型中一般有兩類(lèi)參數(shù),一類(lèi)是可以從數(shù)據(jù)中學(xué)習(xí)估計(jì)得到,還有一類(lèi)參數(shù)時(shí)無(wú)法從數(shù)據(jù)中估計(jì),只能靠人的經(jīng)驗(yàn)進(jìn)行設(shè)計(jì)指定,后者成為超參數(shù)。比如,支持向量機(jī)里面的C Kernal Gamma;樸素貝葉斯里面的alpha等。

超參數(shù)優(yōu)化有很多方法:

最常見(jiàn)的類(lèi)型是黑盒優(yōu)化 (black-box function optimization)。所謂黑盒優(yōu)化,就是將決策網(wǎng)絡(luò)當(dāng)作是一個(gè)黑盒來(lái)進(jìn)行優(yōu)化,僅關(guān)心輸入和輸出,而忽略其內(nèi)部機(jī)制。決策網(wǎng)絡(luò)通常是可以參數(shù)化的,這時(shí)候我們進(jìn)行優(yōu)化首先要考慮的是收斂性。

以下的幾類(lèi)方法都是屬于黑盒優(yōu)化:

網(wǎng)格搜索 (grid search)

Grid search大家都應(yīng)該比較熟悉,是一種通過(guò)遍歷給定的參數(shù)組合來(lái)優(yōu)化模型表現(xiàn)的方法。網(wǎng)格搜索的問(wèn)題是很容易發(fā)生維度災(zāi)難,優(yōu)點(diǎn)是很容易并行。

隨機(jī)搜索 (random search)

隨機(jī)搜索是利用隨機(jī)數(shù)求極小點(diǎn)而求得函數(shù)近似的最優(yōu)解的方法。

很多時(shí)候,隨機(jī)搜索比網(wǎng)格搜索效果要更好,但是我們可以從上圖看出,它們都不能保證找到最優(yōu)解。

貝葉斯優(yōu)化

貝葉斯優(yōu)化是一種迭代的優(yōu)化算法,包含兩個(gè)主要的元素,輸入數(shù)據(jù)假設(shè)的模型和一個(gè)采集函數(shù)用來(lái)來(lái)決定下一步要評(píng)估哪一個(gè)點(diǎn)。每一步迭代,都使用所有的觀測(cè)數(shù)據(jù)fit模型,然后利用激活函數(shù)預(yù)測(cè)模型的概率分布,決定如何利用參數(shù)點(diǎn),權(quán)衡是Explaoration還是Exploitation。相對(duì)于其它的黑盒優(yōu)化算法,激活函數(shù)的計(jì)算量要少很多,這也是為什么貝葉斯優(yōu)化被認(rèn)為是更好的超參數(shù)調(diào)優(yōu)的算法。

黑盒優(yōu)化的一些工具:

hyperopt

hyperopt 是一個(gè)Python庫(kù),可以用來(lái)尋找實(shí)數(shù),離散值,條件維度等搜索空間的最佳值

Google Vizier

Google的內(nèi)部的機(jī)器學(xué)習(xí)系統(tǒng) Google Vizier能夠利用遷移學(xué)習(xí)等技術(shù)自動(dòng)優(yōu)化其他機(jī)器學(xué)習(xí)系統(tǒng)的超參數(shù)

advisor

Google Vizier的開(kāi)源實(shí)現(xiàn)

katib

基于Kubernetes的超參數(shù)優(yōu)化工具

由于優(yōu)化目標(biāo)具有不連續(xù)、不可導(dǎo)等數(shù)學(xué)性質(zhì),所以一些搜索和非梯度優(yōu)化算法被用來(lái)求解該問(wèn)題,包括我們上面提到的這些黑盒算法。此類(lèi)算法通過(guò)采樣和對(duì)采樣的評(píng)價(jià)進(jìn)行搜索,往往需要大量對(duì)采樣的評(píng)價(jià)才能獲得比較好的結(jié)果。然而,在自動(dòng)機(jī)器學(xué)習(xí)任務(wù)中評(píng)價(jià)往往通過(guò) k 折交叉驗(yàn)證獲得,在大數(shù)據(jù)集的機(jī)器學(xué)習(xí)任務(wù)上,獲得一個(gè)評(píng)價(jià)的時(shí)間代價(jià)巨大。這也影響了優(yōu)化算法在自動(dòng)機(jī)器學(xué)習(xí)問(wèn)題上的效果。所以一些減少評(píng)價(jià)代價(jià)的方法被提出來(lái),其中多保真度優(yōu)化(multi-fidelity methods)就是其中的一種。這里的技術(shù)包括:基于學(xué)習(xí)曲線(xiàn)來(lái)決定是否要提前終止訓(xùn)練,探索-利用困境(exploration exploitation)的多臂老虎機(jī)算法 (Multi-armed bandit)等等。

另外還有一些研究是基于梯度下降的優(yōu)化。

超參數(shù)優(yōu)化面臨許多挑戰(zhàn):

對(duì)于大規(guī)模的模型或者復(fù)雜的機(jī)器學(xué)習(xí)流水線(xiàn)而言,需要評(píng)估的空間規(guī)模非常大

配置空間很復(fù)雜

無(wú)法或者很難利用損失函數(shù)的梯度變化

訓(xùn)練集合的規(guī)模太小

很容易過(guò)擬合

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 機(jī)器人
    +關(guān)注

    關(guān)注

    211

    文章

    28702

    瀏覽量

    208668
  • 機(jī)器學(xué)習(xí)

    關(guān)注

    66

    文章

    8446

    瀏覽量

    133123
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    傳統(tǒng)機(jī)器學(xué)習(xí)方法和應(yīng)用指導(dǎo)

    在上一篇文章中,我們介紹了機(jī)器學(xué)習(xí)的關(guān)鍵概念術(shù)語(yǔ)。在本文中,我們會(huì)介紹傳統(tǒng)機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí)和多種算法特征,供各位老師選擇。 01 傳統(tǒng)機(jī)器
    的頭像 發(fā)表于 12-30 09:16 ?418次閱讀
    傳統(tǒng)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法和應(yīng)用指導(dǎo)

    如何選擇云原生機(jī)器學(xué)習(xí)平臺(tái)

    當(dāng)今,云原生機(jī)器學(xué)習(xí)平臺(tái)因其彈性擴(kuò)展、高效部署、低成本運(yùn)營(yíng)等優(yōu)勢(shì),逐漸成為企業(yè)構(gòu)建和部署機(jī)器學(xué)習(xí)應(yīng)用的首選。然而,市場(chǎng)上的云原生機(jī)器
    的頭像 發(fā)表于 12-25 11:54 ?168次閱讀

    動(dòng)機(jī)器人的技術(shù)突破和未來(lái)展望

    動(dòng)機(jī)器人已經(jīng)成為現(xiàn)代社會(huì)不可或缺的一部分,在各個(gè)領(lǐng)域發(fā)揮著越來(lái)越重要的作用。在這個(gè)過(guò)程中,富唯智能機(jī)器人以其卓越的技術(shù)突破,引領(lǐng)著移動(dòng)機(jī)器人領(lǐng)域的發(fā)展潮流。
    的頭像 發(fā)表于 12-13 17:57 ?281次閱讀
    移<b class='flag-5'>動(dòng)機(jī)器</b>人的技術(shù)突破和未來(lái)展望

    恩智浦eIQ Time Series Studio 工具使用全攻略

    ? 基本介紹 eIQ Time Series Studio(簡(jiǎn)稱(chēng)eIQ TSS)是恩智浦半導(dǎo)體推出的一款專(zhuān)為嵌入式微控制器設(shè)計(jì)的基于時(shí)間序列的AI和機(jī)器學(xué)習(xí)開(kāi)發(fā)套件。它集成了自動(dòng)機(jī)器學(xué)習(xí)
    的頭像 發(fā)表于 12-12 09:37 ?989次閱讀
    恩智浦eIQ Time Series Studio 工具使用全攻略

    ASR和機(jī)器學(xué)習(xí)的關(guān)系

    自動(dòng)語(yǔ)音識(shí)別(ASR)技術(shù)的發(fā)展一直是人工智能領(lǐng)域的一個(gè)重要分支,它使得機(jī)器能夠理解和處理人類(lèi)語(yǔ)言。隨著機(jī)器學(xué)習(xí)(ML)技術(shù)的迅猛發(fā)展,ASR系統(tǒng)的性能和準(zhǔn)確性得到了顯著提升。 ASR
    的頭像 發(fā)表于 11-18 15:16 ?409次閱讀

    什么是機(jī)器學(xué)習(xí)?通過(guò)機(jī)器學(xué)習(xí)方法能解決哪些問(wèn)題?

    來(lái)源:Master編程樹(shù)“機(jī)器學(xué)習(xí)”最初的研究動(dòng)機(jī)是讓計(jì)算機(jī)系統(tǒng)具有人的學(xué)習(xí)能力以便實(shí)現(xiàn)人工智能。因?yàn)闆](méi)有學(xué)習(xí)能力的系統(tǒng)很難被認(rèn)為是具有智能
    的頭像 發(fā)表于 11-16 01:07 ?530次閱讀
    什么是<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>?通過(guò)<b class='flag-5'>機(jī)器</b><b class='flag-5'>學(xué)習(xí)</b>方法能解決哪些問(wèn)題?

    NPU與機(jī)器學(xué)習(xí)算法的關(guān)系

    在人工智能領(lǐng)域,機(jī)器學(xué)習(xí)算法是實(shí)現(xiàn)智能系統(tǒng)的核心。隨著數(shù)據(jù)量的激增和算法復(fù)雜度的提升,對(duì)計(jì)算資源的需求也在不斷增長(zhǎng)。NPU作為一種專(zhuān)門(mén)為深度學(xué)習(xí)機(jī)器
    的頭像 發(fā)表于 11-15 09:19 ?632次閱讀

    帕斯科飼料碼垛全自動(dòng)機(jī)器人本體

    碼垛機(jī)器
    psk123123
    發(fā)布于 :2024年11月03日 16:33:03

    氯化鉀自動(dòng)拆包機(jī)器人 全自動(dòng)機(jī)械手拆袋機(jī)案例 #機(jī)械 #自動(dòng)化設(shè)備

    機(jī)器自動(dòng)
    山東偉豪思拆包機(jī)器人
    發(fā)布于 :2024年09月11日 11:55:02

    探索AC自動(dòng)機(jī):多關(guān)鍵詞搜索的原理與應(yīng)用案例

    方法的效率會(huì)顯著下降,尤其是在需要與詞典進(jìn)行詳盡對(duì)比的場(chǎng)景中。本文將介紹的Aho-Corasick(AC)自動(dòng)機(jī)作為多模式匹配中的經(jīng)典算法,不僅能夠處理大規(guī)模文本數(shù)據(jù),還能確保搜索過(guò)程的實(shí)時(shí)性和準(zhǔn)確性。 AC自動(dòng)機(jī):文本搜索的革命性工具 AC
    的頭像 發(fā)表于 08-26 15:55 ?977次閱讀
    探索AC<b class='flag-5'>自動(dòng)機(jī)</b>:多關(guān)鍵詞搜索的原理與應(yīng)用案例

    機(jī)器學(xué)習(xí)算法原理詳解

    機(jī)器學(xué)習(xí)作為人工智能的一個(gè)重要分支,其目標(biāo)是通過(guò)讓計(jì)算機(jī)自動(dòng)從數(shù)據(jù)中學(xué)習(xí)并改進(jìn)其性能,而無(wú)需進(jìn)行明確的編程。本文將深入解讀幾種常見(jiàn)的機(jī)器
    的頭像 發(fā)表于 07-02 11:25 ?1404次閱讀

    深度學(xué)習(xí)與傳統(tǒng)機(jī)器學(xué)習(xí)的對(duì)比

    在人工智能的浪潮中,機(jī)器學(xué)習(xí)和深度學(xué)習(xí)無(wú)疑是兩大核心驅(qū)動(dòng)力。它們各自以其獨(dú)特的方式推動(dòng)著技術(shù)的進(jìn)步,為眾多領(lǐng)域帶來(lái)了革命性的變化。然而,盡管它們都屬于機(jī)器
    的頭像 發(fā)表于 07-01 11:40 ?1558次閱讀

    自動(dòng)停車(chē)機(jī)器人,如何快速構(gòu)建?

    停車(chē)機(jī)器人是用于在停車(chē)場(chǎng)或車(chē)庫(kù)等場(chǎng)所中進(jìn)行車(chē)輛的自動(dòng)停放和取車(chē)操作。隨著智能交通和智能城市的發(fā)展,停車(chē)機(jī)器人在解決停車(chē)難、提高停車(chē)效率和減少停車(chē)空間浪費(fèi)等方面具有廣闊的應(yīng)用前景。 ▲停車(chē)移動(dòng)機(jī)
    的頭像 發(fā)表于 06-20 11:25 ?298次閱讀
    <b class='flag-5'>自動(dòng)</b>停車(chē)<b class='flag-5'>機(jī)器</b>人,如何快速構(gòu)建?

    ???b class='flag-5'>機(jī)器人第100000臺(tái)移動(dòng)機(jī)器人下線(xiàn)

    ???b class='flag-5'>機(jī)器人第100000臺(tái)移動(dòng)機(jī)器人已經(jīng)成功下線(xiàn) 。這是一個(gè)重要的里程碑,標(biāo)志著???b class='flag-5'>機(jī)器人在全品類(lèi)移動(dòng)機(jī)器人(AMR)領(lǐng)域取得了顯著的進(jìn)展。
    的頭像 發(fā)表于 05-24 14:43 ?1125次閱讀

    自動(dòng)機(jī)器人激光焊接機(jī)主要用于哪些行業(yè)

    編輯:鐳拓激光全自動(dòng)機(jī)器人激光焊接技術(shù)應(yīng)用于多個(gè)行業(yè)中發(fā)揮著越來(lái)越重要的作用,為制造業(yè)的升級(jí)轉(zhuǎn)型提供了有力支持。隨著技術(shù)的不斷進(jìn)步,其應(yīng)用領(lǐng)域還將進(jìn)一步擴(kuò)大,以下是一些主要應(yīng)用領(lǐng)域:汽車(chē)制造業(yè):在
    的頭像 發(fā)表于 03-19 11:08 ?899次閱讀
    全<b class='flag-5'>自動(dòng)機(jī)器</b>人激光焊接機(jī)主要用于哪些行業(yè)