欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

1個(gè)AI模型=5輛汽車終身碳排量,AI為何如此耗能?

電子設(shè)計(jì) ? 來源:電子設(shè)計(jì) ? 作者:電子設(shè)計(jì) ? 2021-01-21 03:27 ? 次閱讀

整理 | 彎月 責(zé)編 | 鄭麗媛
出品 | CSDN(ID:CSDNnews)

根據(jù)最新的研究結(jié)果,訓(xùn)練一個(gè)普通的 AI 模型消耗的能源相當(dāng)于五輛汽車一生排放的碳總量,而 BERT 模型的碳排放量約為 1400 磅二氧化碳,這相當(dāng)于一個(gè)人來回坐飛機(jī)橫穿美國。為何 AI 模型會如此費(fèi)電,它們與傳統(tǒng)的數(shù)據(jù)中心計(jì)算有何不同?

訓(xùn)練效率低下

傳統(tǒng)數(shù)據(jù)中心負(fù)責(zé)處理的工作包括視頻流,電子郵件和社交媒體。AI 所需的計(jì)算量則更多,因?yàn)樗枰x取大量的數(shù)據(jù)、持續(xù)學(xué)習(xí),直到完成訓(xùn)練。

與人類的學(xué)習(xí)方式相比,AI 的訓(xùn)練效率非常低下。現(xiàn)代 AI 使用人工神經(jīng)網(wǎng)絡(luò),這是模擬人腦神經(jīng)元的數(shù)學(xué)計(jì)算。每兩個(gè)相鄰神經(jīng)元的連接強(qiáng)度都是神經(jīng)網(wǎng)絡(luò)上的一個(gè)參數(shù),名叫權(quán)重。神經(jīng)網(wǎng)絡(luò)的訓(xùn)練則需要從隨機(jī)權(quán)重開始,一遍遍地運(yùn)行和調(diào)整參數(shù),直到輸出與正確答案一致為止。

常見的一種訓(xùn)練語言神經(jīng)網(wǎng)絡(luò)的方法是,從維基百科和新聞媒體網(wǎng)站下載大量文本,然后把一些詞語遮擋起來,并要求 AI 猜測被遮擋起來的詞語。剛開始的時(shí)候,AI 會全部搞錯(cuò),但是,經(jīng)過不斷地調(diào)整后,AI 會逐漸學(xué)習(xí)數(shù)據(jù)中的模式,最終整個(gè)神經(jīng)網(wǎng)絡(luò)都會變得非常準(zhǔn)確。

相信你聽說過 BERT 模型,基于變換器的雙向編碼器表示技術(shù)(Bidirectional Encoder Representations from Transformers,簡稱 BERT),這是一項(xiàng)由 Google 提出的自然語言處理(NLP)的預(yù)訓(xùn)練技術(shù)。該模型使用了來自維基百科和其他文章的 33 億個(gè)單詞,而且在整個(gè)訓(xùn)練期間,BERT 讀取了該數(shù)據(jù)集 40 次。相比之下,一個(gè) 5 歲的孩子學(xué)說話只需要聽到 4500 萬個(gè)單詞,比 BERT 少3000倍。

尋找最佳結(jié)構(gòu)

語言模型構(gòu)建成本如此之高的原因之一在于,在開發(fā)模型期間,上述訓(xùn)練過程需要反復(fù)多次。因?yàn)檠芯咳藛T需要將神經(jīng)網(wǎng)絡(luò)調(diào)整到最優(yōu),即確定神經(jīng)元的個(gè)數(shù)、神經(jīng)元之間的連接數(shù)以及各個(gè)權(quán)重。他們需要反復(fù)嘗試很多組合,才能提高神經(jīng)網(wǎng)絡(luò)的準(zhǔn)確度。相比之下,人類的大腦不需要尋找最佳結(jié)構(gòu),經(jīng)過幾億年的進(jìn)化,人類大腦已具備這種結(jié)構(gòu)。

隨著各大公司和學(xué)術(shù)界在 AI 領(lǐng)域的競爭愈演愈烈,不斷提高技術(shù)水平的壓力也越來越大。在自動翻譯等難度巨大的任務(wù)中,如果能將準(zhǔn)確度提高 1%,也將被視為重大的進(jìn)步,可以作為宣傳產(chǎn)品的籌碼。然而,為了獲得這 1% 的提升,研究人員需要嘗試成千上萬的結(jié)構(gòu)來訓(xùn)練模型,直到找到最佳模型。

隨著模型不斷發(fā)展,模型的復(fù)雜度逐年攀高。另一款與 BERT 類似的最新語言模型 GPT-2,其神經(jīng)網(wǎng)絡(luò)包含 15 億個(gè)權(quán)重。而 GPT-3 由于其高精度,引起了業(yè)界的轟動,但其權(quán)重高達(dá) 1750 億個(gè)。

此外,AI 模型的訓(xùn)練需要在專用硬件(例如圖形處理器)上進(jìn)行,這些硬件的功耗普遍高于傳統(tǒng) CPU。如果你的筆記本電腦加載了優(yōu)質(zhì)的顯卡,可以玩很多高端游戲,那么你肯定會注意到這臺機(jī)器產(chǎn)生的熱量也比普通電腦高很多。

所有這些都表明,開發(fā)先進(jìn)的 AI 模型需要大量的碳排放量。除非我們能夠利用百分百可再生能源,否則真的懷疑 AI 的進(jìn)步與減少溫室氣體排放以及減緩氣候變化,孰重孰輕?是否真的可以功過相抵?

最后,開發(fā) AI 的耗資如此巨大,能夠承擔(dān)得起各項(xiàng)費(fèi)用的公司與機(jī)構(gòu)實(shí)在少之又少,最終究竟應(yīng)該開發(fā)哪種模型的決定權(quán)無疑也落到了這群人的手中。

AI 模型訓(xùn)練應(yīng)該適可而止

本文并不是要否定人工智能研究的未來,只不過在訓(xùn)練 AI 模型的時(shí)候,我們需要采用更高效的方法,而且應(yīng)該做到適可而止。

隨著 AI 模型訓(xùn)練方法的效率提升,相信訓(xùn)練的成本也會下降。同時(shí),我們需要在訓(xùn)練模型的成本和使用模型的成本之間權(quán)衡取舍。例如,在 AI 模型準(zhǔn)確度到達(dá)一定高度后,每提升 1% 都需要付出巨大的精力,而實(shí)際得到的收益卻很少。不追求極致,更多地使用“適可而止”的模型,不僅可以降低碳排放量,而且也能為我們帶來更大獲益。

審核編輯 黃昊宇

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4783

    瀏覽量

    101239
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    31711

    瀏覽量

    270510
收藏 人收藏

    評論

    相關(guān)推薦

    DeepSeek模型為何掀起如此大的波瀾

    DeepSeek-R1 是中國初創(chuàng)公司 DeepSeek 推出的人工智能模型,不久前,在人工智能開源平臺 Hugging Face 上發(fā)布數(shù)小時(shí),便躍居下載量和活躍度最高模型的榜首;同時(shí)因其促使
    的頭像 發(fā)表于 02-11 09:13 ?193次閱讀

    AI for Science:人工智能驅(qū)動科學(xué)創(chuàng)新》第二章AI for Science的技術(shù)支撐學(xué)習(xí)心得

    for Science的技術(shù)支撐”的學(xué)習(xí)心得,可以從以下幾個(gè)方面進(jìn)行歸納和總結(jié): 1. 技術(shù)基礎(chǔ)的深入理解 在閱讀第二章的過程中,我對于AI for Science所需的技術(shù)基礎(chǔ)有了更加深入的理解。這一章詳細(xì)闡述了
    發(fā)表于 10-14 09:16

    ai模型ai框架的關(guān)系是什么

    AI模型AI框架是人工智能領(lǐng)域中兩個(gè)重要的概念,它們之間的關(guān)系密切且復(fù)雜。 AI模型的定義
    的頭像 發(fā)表于 07-16 10:07 ?5.1w次閱讀

    ai模型和傳統(tǒng)ai的區(qū)別在哪?

    的BERT模型使用了33億個(gè)參數(shù),而傳統(tǒng)AI模型通常只有幾千到幾百萬個(gè)參數(shù)。 模型復(fù)雜度
    的頭像 發(fā)表于 07-16 10:06 ?1682次閱讀

    AI模型AI框架的關(guān)系

    在探討AI模型AI框架的關(guān)系時(shí),我們首先需要明確兩者的基本概念及其在人工智能領(lǐng)域中的角色。AI模型通常指的是具有極大規(guī)模、高度復(fù)雜性和
    的頭像 發(fā)表于 07-15 11:42 ?1292次閱讀

    STM CUBE AI錯(cuò)誤導(dǎo)入onnx模型報(bào)錯(cuò)的原因?

    使用cube-AI分析模型時(shí)報(bào)錯(cuò),該模型是pytorch的cnn轉(zhuǎn)化成onnx ``` Neural Network Tools for STM32AI v1.7.0 (STM.
    發(fā)表于 05-27 07:15

    為什么Cubeai導(dǎo)入模型的時(shí)候報(bào)錯(cuò)[AI:persondetection] ModuleNotFoundError: No module named \'_socket\'?

    在使用CubeIde導(dǎo)入ai模型進(jìn)行模型分析的時(shí)候報(bào)錯(cuò)[AI:persondetection] ModuleNotFoundError: No module named \'_sock
    發(fā)表于 05-21 06:44

    模型為何耗能大戶

    除了耗電,另有研究顯示,AI大語言模型GPT-3在訓(xùn)練期間耗水近700噸,每回答20個(gè)至50個(gè)問題就要消耗500毫升水。弗吉尼亞理工大學(xué)研究指出,Meta公司在2022年使用了超過26
    的頭像 發(fā)表于 04-29 17:25 ?688次閱讀

    什么是邊緣計(jì)算?它為何如此重要?

    ,什么是邊緣計(jì)算?它為何如此重要?本文將對其進(jìn)行詳細(xì)的解析。 邊緣計(jì)算,簡而言之,是指在靠近物或數(shù)據(jù)源頭的一側(cè),采用網(wǎng)絡(luò)、計(jì)算、存儲、應(yīng)用核心能力為一體的開放平臺,就近提供最近端服務(wù)。它的核心思想是將計(jì)算任
    的頭像 發(fā)表于 04-22 15:25 ?541次閱讀

    開發(fā)者手機(jī) AI - 目標(biāo)識別 demo

    功能簡介 該應(yīng)用是在Openharmony 4.0系統(tǒng)上開發(fā)的一個(gè)目標(biāo)識別的AI應(yīng)用,旨在從上到下打通Openharmony AI子系統(tǒng),展示Openharmony系統(tǒng)的AI能力,并為
    發(fā)表于 04-11 16:14

    防止AI模型被黑客病毒入侵控制(原創(chuàng))聆思大模型AI開發(fā)套件評測4

    在訓(xùn)練一只聰明的AI小動物解決實(shí)際問題,通過構(gòu)建神經(jīng)網(wǎng)絡(luò)模型并進(jìn)行推理,讓電腦也能像人一樣根據(jù)輸入信息做出決策。 在上述示例中,我創(chuàng)建了一個(gè)簡單的深度學(xué)習(xí)模型,該
    發(fā)表于 03-19 11:18

    cubemx ai導(dǎo)入onnx模型后壓縮失敗了怎么解決?

    cubemx ai導(dǎo)入onnx模型后壓縮失敗。請問我怎么解決
    發(fā)表于 03-19 07:58

    AI模型遠(yuǎn)程控制啟動車輛(原創(chuàng))

    AI模型
    還沒吃飯
    發(fā)布于 :2024年03月18日 15:18:29

    使用cube-AI分析模型時(shí)報(bào)錯(cuò)的原因有哪些?

    使用cube-AI分析模型時(shí)報(bào)錯(cuò),該模型是pytorch的cnn轉(zhuǎn)化成onnx ``` Neural Network Tools for STM32AI v1.7.0 (STM.
    發(fā)表于 03-14 07:09

    NanoEdge AI的技術(shù)原理、應(yīng)用場景及優(yōu)勢

    能耗并提高數(shù)據(jù)安全性。本文將對 NanoEdge AI 的技術(shù)原理、應(yīng)用場景以及優(yōu)勢進(jìn)行綜述。 1、技術(shù)原理 NanoEdge AI 的核心技術(shù)包括邊緣計(jì)算、神經(jīng)網(wǎng)絡(luò)壓縮和低功耗硬件設(shè)計(jì)。邊緣計(jì)算
    發(fā)表于 03-12 08:09