欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內(nèi)不再提示

探究機器學習 (ML) 模型的性能

Tensorflowers ? 來源:TensorFlow ? 作者:Lora Aroyo 和 Pravee ? 2021-04-13 14:37 ? 次閱讀

機器學習 (ML) 模型的性能既取決于學習算法,也取決于用于訓練和評估的數(shù)據(jù)。算法的作用已經(jīng)得到充分研究,也是眾多挑戰(zhàn)(如 SQuAD、GLUE、ImageNet 等)的焦點。此外,數(shù)據(jù)也已經(jīng)過改進,包括一系列應對 ML 評估問題的研討會。相比之下,專注于 - 用于評估 ML 模型的數(shù)據(jù)的研究和挑戰(zhàn)并不常見。

此外,許多評估數(shù)據(jù)集包含容易評估的項目,例如帶有易于識別的主題的照片,因此錯過了真實世界環(huán)境的自然歧義。評估中缺少模糊的真實世界樣本,削弱了可靠地測試機器學習性能的能力,這使 ML 模型容易形成“弱點”,即模型難以或無法準確評估的樣本的類別,因為評估集中缺少這一類樣本。

SQuAD

https://rajpurkar.github.io/SQuAD-explorer/

GLUE

https://gluebenchmark.com/leaderboard

ImageNet

https://kobiso.github.io/Computer-Vision-Leaderboard/imagenet

為了解決識別 ML 模型中這些弱點的問題,我們最近在 HCOMP 2020 上發(fā)起了眾包機器學習不良測試集 (CATS4ML) 數(shù)據(jù)挑戰(zhàn)賽(面向全球研究人員和開發(fā)者開放至 2021 年 4 月 30 日)。挑戰(zhàn)的目標是提高 ML 評估集的標準,并盡可能多地找到使算法處理起來會有困惑或其他問題的樣本。CATS4ML 依靠人們的能力和直覺來發(fā)現(xiàn)機器學習具有信心但實際上卻分類錯誤的新數(shù)據(jù)樣本。

眾包機器學習不良測試集

https://cats4ml.humancomputation.com/

什么是 ML 的“弱點”?

弱點有兩類:已知的未知(Known Unknowns)未知的未知(Unknown Unknowns)。已知的未知是指模型對正確分類沒有把握的樣本。研究界在被稱為主動學習的領域研究這一問題,并發(fā)現(xiàn)了解決方法,用很籠統(tǒng)的話來說就是,在不確定的樣本上向人們交互式地征集新的標簽。例如,如果模型不確定一張照片的主題是否是貓,會要求人員進行驗證;但如果系統(tǒng)確定,則不會要求人員驗證。雖然這方面還有改進的空間,但令人欣慰的是,模型的置信度與其性能相關,也就是說,人們可以看到模型不知道的東西。

主動學習

http://digital.library.wisc.edu/1793/60660

另一方面,未知的未知是指模型對其答案充滿信心,但實際上是錯誤的樣本。主動發(fā)現(xiàn)未知的未知的研究(例如,Attenberg 2015 和 Crawford 2019)已經(jīng)幫助發(fā)現(xiàn)了大量的非預期機器行為。與這類發(fā)現(xiàn)未知的未知方法相比,生成對抗網(wǎng)絡 (GAN) 以計算機光學錯覺的形式為圖像識別模型生成未知的未知,導致深度學習模型犯下人類無法感知的錯誤。雖然 GAN 在有意操縱的情況下會發(fā)現(xiàn)模型漏洞,但真實世界樣本可以更好地突出模型在日常性能中的失敗。這些真實世界樣本是 CATS4ML 感興趣的未知的未知 - 挑戰(zhàn)的目的是收集人類可以可靠地解釋但許多 ML 模型會自信地不同意的未經(jīng)操作的樣本。

Attenberg 2015

https://dl.acm.org/doi/10.1145/2700832

Crawford 2019

https://excavating.ai

示例說明由對抗噪聲引起的計算機視覺錯覺如何幫助發(fā)現(xiàn) ML 模型的機器操作未知的未知(基于 Brown 2018)

Brown 2018

https://ai.googleblog.com/2018/09/introducing-unrestricted-adversarial.html

CATS4ML 數(shù)據(jù)挑戰(zhàn)賽第一版:

Open Images 數(shù)據(jù)集

CATS4ML 數(shù)據(jù)挑戰(zhàn)賽側重于視覺識別,使用Open Images 數(shù)據(jù)集的圖像和標簽。挑戰(zhàn)賽的目標圖像選自 Open Images 數(shù)據(jù)集,以及來自同一數(shù)據(jù)集的一組 24 個目標標簽。挑戰(zhàn)賽的參與者被邀請發(fā)明新的創(chuàng)造性方法探索這個現(xiàn)有的公開可用數(shù)據(jù)集,并以預先選擇的目標標簽列表為中心,為 ML 模型發(fā)現(xiàn)未知的未知樣本。

CATS4ML 數(shù)據(jù)挑戰(zhàn)賽

https://cats4ml.humancomputation.com/

CATS4ML 是對 FAIR 最近推出的 DynaBench 動態(tài)數(shù)據(jù)收集研究平臺的補充。DynaBench 使用 ML 模型在人類參與下解決靜態(tài)基準問題,而 CATS4ML 則專注于通過鼓勵探索現(xiàn)有 ML 基準有無可能屬于未知的未知不利樣本改善 ML 評估數(shù)據(jù)集。結果將有助于檢測和避免未來的錯誤,也將對模型的可解釋性提供見解。

FAIR

https://ai.facebook.com/tools/dynabench/

DynaBench

https://dynabench.org/

CATS4ML 旨在由此通過提供數(shù)據(jù)集資源來提高人們對這個問題的認識,開發(fā)者可以利用這些資源發(fā)現(xiàn)算法弱點。這也將讓研究人員了解如何為機器學習創(chuàng)建更平衡、更多樣化、更具有社會意識的基準數(shù)據(jù)集。

編輯:jq

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 數(shù)據(jù)

    關注

    8

    文章

    7157

    瀏覽量

    89664
  • GLUE
    +關注

    關注

    0

    文章

    5

    瀏覽量

    7378
  • 機器學習
    +關注

    關注

    66

    文章

    8442

    瀏覽量

    133108

原文標題:探索機器學習中的未解之謎

文章出處:【微信號:tensorflowers,微信公眾號:Tensorflowers】歡迎添加關注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關推薦

    《具身智能機器人系統(tǒng)》第7-9章閱讀心得之具身智能機器人與大模型

    醫(yī)療領域,手術輔助機器人需要毫米級的精確控制,書中有介紹基于視覺伺服的實時控制算法,以及如何利用大模型優(yōu)化手術路徑規(guī)劃。工業(yè)場景中,協(xié)作機器人面臨的主要挑戰(zhàn)是快速適應新工藝流程。具身智能通過在線
    發(fā)表于 12-24 15:03

    cmp在機器學習中的作用 如何使用cmp進行數(shù)據(jù)對比

    機器學習領域,"cmp"這個術語可能并不是一個常見的術語,它可能是指"比較"(comparison)的縮寫。 比較在機器學習中的作用 模型
    的頭像 發(fā)表于 12-17 09:35 ?322次閱讀

    自然語言處理與機器學習的關系 自然語言處理的基本概念及步驟

    Learning,簡稱ML)是人工智能的一個核心領域,它使計算機能夠從數(shù)據(jù)中學習并做出預測或決策。自然語言處理與機器學習之間有著密切的關系,因為
    的頭像 發(fā)表于 12-05 15:21 ?748次閱讀

    ASR和機器學習的關系

    自動語音識別(ASR)技術的發(fā)展一直是人工智能領域的一個重要分支,它使得機器能夠理解和處理人類語言。隨著機器學習ML)技術的迅猛發(fā)展,ASR系統(tǒng)的
    的頭像 發(fā)表于 11-18 15:16 ?405次閱讀

    AI大模型與深度學習的關系

    AI大模型與深度學習之間存在著密不可分的關系,它們互為促進,相輔相成。以下是對兩者關系的介紹: 一、深度學習是AI大模型的基礎 技術支撐 :深度學習
    的頭像 發(fā)表于 10-23 15:25 ?1352次閱讀

    AI大模型與傳統(tǒng)機器學習的區(qū)別

    AI大模型與傳統(tǒng)機器學習在多個方面存在顯著的區(qū)別。以下是對這些區(qū)別的介紹: 一、模型規(guī)模與復雜度 AI大模型 :通常包含數(shù)十億甚至數(shù)萬億的參
    的頭像 發(fā)表于 10-23 15:01 ?1115次閱讀

    為AI、ML和數(shù)字孿生模型建立可信數(shù)據(jù)

    在當今數(shù)據(jù)驅(qū)動的世界中,人工智能(AI)、機器學習ML)和數(shù)字孿生技術正在深刻改變行業(yè)、流程和企業(yè)運營環(huán)境。每天產(chǎn)生的超過3.28億TB數(shù)據(jù)已成為新“石油”——為下一代數(shù)字系統(tǒng)提供所需的能源。
    的頭像 發(fā)表于 09-30 10:23 ?345次閱讀

    AI引擎機器學習陣列指南

    云端動態(tài)工作負載以及超高帶寬網(wǎng)絡,同時還可提供高級安全性功能。AI 和數(shù)據(jù)科學家以及軟硬件開發(fā)者均可充分利用高計算密度的優(yōu)勢來加速提升任何應用的性能。AI 引擎機器學習擁有先進的張量計算能力,非常適合用于高度優(yōu)化的 AI 和
    的頭像 發(fā)表于 09-18 09:16 ?481次閱讀
    AI引擎<b class='flag-5'>機器</b><b class='flag-5'>學習</b>陣列指南

    如何訓練一個有效的eIQ基本分類模型

    處理單元(NPU),用于機器學習(ML)加速。相比單獨的CPU核,eIQ Neutron NPU能夠提供高達42倍的機器學習推理
    的頭像 發(fā)表于 08-01 09:29 ?2034次閱讀
    如何訓練一個有效的eIQ基本分類<b class='flag-5'>模型</b>

    如何理解機器學習中的訓練集、驗證集和測試集

    理解機器學習中的訓練集、驗證集和測試集,是掌握機器學習核心概念和流程的重要一步。這三者不僅構成了模型學習
    的頭像 發(fā)表于 07-10 15:45 ?4696次閱讀

    Al大模型機器

    和迭代來不斷改進自身性能。它們可以從用戶交互中學習并根據(jù)反饋進行調(diào)整,以提高對話質(zhì)量和準確性??啥ㄖ菩耘c整合性: AI大模型機器人可以根據(jù)特定需求進行定制和整合,以滿足不同場景和應用的
    發(fā)表于 07-05 08:52

    人工智能、機器學習和深度學習是什么

    在科技日新月異的今天,人工智能(Artificial Intelligence, AI)、機器學習(Machine Learning, ML)和深度學習(Deep Learning,
    的頭像 發(fā)表于 07-03 18:22 ?1449次閱讀

    深入探討機器學習的可視化技術

    機器學習可視化(簡稱ML可視化)一般是指通過圖形或交互方式表示機器學習模型、數(shù)據(jù)及其關系的過程。
    發(fā)表于 04-25 11:17 ?485次閱讀
    深入探討<b class='flag-5'>機器</b><b class='flag-5'>學習</b>的可視化技術

    機器學習ML)推理主要計算之存內(nèi)計算芯片

    機器學習ML)應用已經(jīng)在汽車、醫(yī)療保健、金融和技術等各個領域變得無處不在。這導致對高性能、高能效 ML 硬件解決方案的需求不斷增加。
    發(fā)表于 04-07 10:48 ?1329次閱讀
    <b class='flag-5'>機器</b><b class='flag-5'>學習</b>(<b class='flag-5'>ML</b>)推理主要計算之存內(nèi)計算芯片

    Achronix新推出一款用于AI/ML計算或者大模型的B200芯片

    近日舉辦的GTC大會把人工智能/機器學習(AI/ML)領域中的算力比拼又帶到了一個新的高度,這不只是說明了通用圖形處理器(GPGPU)時代的來臨
    的頭像 發(fā)表于 03-28 15:48 ?904次閱讀
    Achronix新推出一款用于AI/<b class='flag-5'>ML</b>計算或者大<b class='flag-5'>模型</b>的B200芯片