欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

經(jīng)典圖像分類算法AlexNet介紹

新機(jī)器視覺 ? 來源:智能計(jì)算系統(tǒng) ? 作者:智能計(jì)算系統(tǒng) ? 2022-04-06 14:50 ? 次閱讀

本期開小灶Heyro將帶領(lǐng)大家進(jìn)入下一趟旅程——基于卷積神經(jīng)網(wǎng)絡(luò)的圖像分類算法講解,從而幫助大家了解在卷積神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)下衍生出的被用于圖像分類的經(jīng)典算法。

在了解圖像分類算法以前,我們先來了解“何為圖像分類”。

圖像分類的核心是從給定的分類集合中給圖像分配一個(gè)標(biāo)簽的任務(wù)。簡(jiǎn)言之,我們需要對(duì)一個(gè)輸入圖像進(jìn)行分析后返回一個(gè)對(duì)應(yīng)的分類標(biāo)簽,標(biāo)簽來自預(yù)先定義的可能類別集。圖像分類的任務(wù)即為正確給出輸入圖像的類別或輸出不同類別的概率。例如,我們先假設(shè)一個(gè)含有可能類別的類別集:

Categories = {cat, dog, fox}

然后,我們向分類系統(tǒng)提供一張狐貍?cè)膱D片。

經(jīng)過分類系統(tǒng)的處理,最終輸出可以是單一標(biāo)簽dog,也可以是基于概率的多個(gè)標(biāo)簽,例如cat:1%, dog:94%,fox:5% 。

計(jì)算機(jī)并不能像人類一樣快速通過視覺系統(tǒng)識(shí)別出圖像信息的語義。對(duì)于計(jì)算機(jī)而言,RGB圖像是由一個(gè)個(gè)像素?cái)?shù)值構(gòu)成的高維矩陣(張量)。計(jì)算機(jī)識(shí)別圖像的任務(wù)即尋找一個(gè)函數(shù)關(guān)系,該函數(shù)可將高維矩陣信息映射到一個(gè)具體的類別標(biāo)簽中。利用計(jì)算機(jī)實(shí)現(xiàn)圖像分類目的過程隨即衍生出圖像分類算法。

圖像分類算法的起源——神經(jīng)認(rèn)知機(jī)

傳統(tǒng)的圖像識(shí)別模型一般包括:底層特征學(xué)習(xí)>特征編碼>空間約束>分類器設(shè)計(jì)>模型融合等幾個(gè)流程。

2012年Alex Krizhevsky提出的CNN(卷積神經(jīng)網(wǎng)絡(luò))模型在ImageNet大規(guī)模視覺識(shí)別比賽(ILSVRC)中脫穎而出,其效果大大超越了傳統(tǒng)的圖像識(shí)別方法,該模型被稱為AlexNet。

基于卷積神經(jīng)網(wǎng)絡(luò)的圖像分類算法起源最早可追溯到日本學(xué)者福島邦彥提出的neocognition(神經(jīng)認(rèn)知機(jī))神經(jīng)網(wǎng)絡(luò)模型。

福島邦彥于1978年至1984年研制了用于手寫字母識(shí)別的多層自組織神經(jīng)網(wǎng)絡(luò)——認(rèn)知機(jī)。福島邦彥在認(rèn)知機(jī)中引入了最大值檢出等概念。簡(jiǎn)言之,當(dāng)網(wǎng)格中某種神經(jīng)元損壞時(shí),該神經(jīng)元立即可由其他神經(jīng)元來代替。由此一來,認(rèn)知機(jī)就具有較好的容錯(cuò)能力。

但是,認(rèn)知機(jī)的網(wǎng)絡(luò)較為復(fù)雜,它對(duì)輸入的大小變換及平移、旋轉(zhuǎn)等變化并不敏感。雖然它能夠識(shí)別復(fù)雜的文字,但卻需要大量的處理單元和連接,這使得其硬件實(shí)現(xiàn)較為困難。

而福島邦彥在1980年提出的“神經(jīng)認(rèn)知機(jī)”神經(jīng)網(wǎng)絡(luò)模型卻能夠很好地應(yīng)對(duì)以上問題。

該模型借鑒了生物的視覺神經(jīng)系統(tǒng)。它對(duì)模式信號(hào)的識(shí)別優(yōu)于認(rèn)知機(jī)。無論輸入信號(hào)發(fā)生變換、失真,抑或被改變大小等,神經(jīng)認(rèn)知機(jī)都能對(duì)輸入信號(hào)進(jìn)行處理。但是,該模型被提出后一直未受到較大關(guān)注,直至AlexNet在ILSVRC中大獲全勝,卷積神經(jīng)網(wǎng)絡(luò)的潛力才為業(yè)界所認(rèn)知。

深度學(xué)習(xí)算法

自AlexNet之后,深度學(xué)習(xí)的發(fā)展極為迅速,網(wǎng)絡(luò)深度也在不斷地快速增長(zhǎng),隨后出現(xiàn)了VGG(19層)、GoogleNet(22層)、ResNet(152層),以及SENet(252層)等深度學(xué)習(xí)算法。

隨著模型深度和結(jié)構(gòu)設(shè)計(jì)的發(fā)展,ImageNet分類的Top-5錯(cuò)誤率也越來越低。在ImageNet上1000種物體的分類中,ResNet的Top-5錯(cuò)誤率僅為3.57%。在同樣的數(shù)據(jù)集上,人眼的識(shí)別錯(cuò)誤率約為5.1%,換言之,目前深度學(xué)習(xí)模型的識(shí)別能力已經(jīng)超過了人眼。

在卷積神經(jīng)網(wǎng)絡(luò)的歷史上,比較有里程碑意義的算法包括AlexNet、VGG、Inception (GoogleNet是Inception系列中的一員),以及ResNet。

在本期開小灶中,我們將首先為大家介紹經(jīng)典圖像分類算法AlexNet。

AlexNet 網(wǎng)絡(luò)結(jié)構(gòu)

作為G. Hinton代表作的AlexNet是深度學(xué)習(xí)領(lǐng)域最重要的成果之一。下面讓我們一起從左到右依次認(rèn)識(shí)這個(gè)結(jié)構(gòu)。

在AlexNet網(wǎng)絡(luò)結(jié)構(gòu)(如下圖所示)中,輸入為一個(gè)224×224大小的RGB圖像。

經(jīng)典圖像分類算法AlexNet介紹

AlexNet網(wǎng)絡(luò)結(jié)構(gòu)

第一層卷積,用48個(gè)11×11×3的卷積核計(jì)算出48個(gè)55×55大小的特征圖,用另外48個(gè)11×11×3的卷積核計(jì)算出另外48個(gè)55×55大小的特征圖,這兩個(gè)分支的卷積步長(zhǎng)都是4,通過卷積把圖像的大小從224′224減小為55×55。第一層卷積之后,進(jìn)行局部響應(yīng)歸一化 (LRN) 以及步長(zhǎng)為2、池化窗口為3×3的最大池化,池化輸出的特征圖大小為27×27。

第二層卷積,用兩組各128個(gè)5×5×48的卷積核對(duì)兩組輸入的特征圖分別進(jìn)行卷積處理,輸出兩組各128個(gè)27×27的特征圖。第二層卷積之后,做局部響應(yīng)歸一化和步長(zhǎng)為2、池化窗口為3×3的最大池化,池化輸出的特征圖大小為13×13。

第三層卷積,將兩組特征圖合為一組。采用192個(gè)3×3×256的卷積核對(duì)所有輸入特征圖做卷積運(yùn)算,再用另外192個(gè)3×3×256的卷積核對(duì)所有輸入特征圖做卷積運(yùn)算,輸出兩組各192個(gè)13×13的特征圖。

第四層卷積,對(duì)兩組輸入特征圖分別用192個(gè)3×3×192的卷積核做卷積運(yùn)算。

第五層卷積,對(duì)兩組輸入特征圖分別用128個(gè)3×3×192的卷積核做卷積運(yùn)算。第五層卷積之后,做步長(zhǎng)為2、池化窗口為3×3的最大池化,池化輸出的特征圖大小為6×6。

第六層和第七層的全連接層都有兩組神經(jīng)元(每組2048個(gè)神經(jīng)元)。

第八層的全連接層輸出1000種特征并送到softmax中,softmax輸出分類的概率。

AlexNet 技術(shù)創(chuàng)新點(diǎn)

相較于傳統(tǒng)人工神經(jīng)網(wǎng)絡(luò)而言,AlexNet的技術(shù)創(chuàng)新體現(xiàn)在四個(gè)方面。

其一為Dropout(隨機(jī)失活)。Dropout于2012年由G. Hinton等人提出。該方法通過隨機(jī)舍棄部分隱層節(jié)點(diǎn)來緩解過擬合。目前,Dropout已經(jīng)成為深度學(xué)習(xí)訓(xùn)練常用的技巧之一。

使用Dropout進(jìn)行模型訓(xùn)練的過程為:a. 以一定概率隨機(jī)舍棄部分隱層神經(jīng)元,即將這些神經(jīng)元的輸出設(shè)置為0;b.一小批訓(xùn)練樣本經(jīng)過正向傳播后,在反向傳播更新權(quán)重時(shí)不更新其中與被舍棄神經(jīng)元相連的權(quán)重;c. 恢復(fù)被刪除神經(jīng)元,并輸入另一小批訓(xùn)練樣本;d. 重復(fù)步驟a ~ c ,直到處理完所有訓(xùn)練樣本。

其二為L(zhǎng)RN(局部響應(yīng)歸一化)。LRN對(duì)同一層的多個(gè)輸入特征圖在每個(gè)位置上做局部歸一化,從而提升高響應(yīng)特征并抑制低響應(yīng)特征。LRN的輸入是卷積層輸出特征圖經(jīng)過ReLU激活函數(shù)后的輸出。但近年來業(yè)界發(fā)現(xiàn)LRN層作用有限,因此目前使用LRN的研究并不多。

其三是Max Pooling(最大池化)。最大池化可以避免特征被平均池化模糊,從而提高特征的魯棒性。在AlexNet之前,很多研究用平均池化;從AlexNet開始,業(yè)界公認(rèn)最大池化的效果比較好。

其四是ReLU激活函數(shù)。在AlexNet之前,常用的激活函數(shù)是sigmoid和tanh。而ReLU函數(shù)很簡(jiǎn)單,我們?cè)谥暗拈_小灶中為大家講解過ReLU激活函數(shù)的特征,即輸入小于0時(shí)輸出0,輸入大于0時(shí)輸出等于輸入。看似非常簡(jiǎn)單的ReLU函數(shù)卻在訓(xùn)練時(shí)帶來了非常好的效果,這是業(yè)界在AlexNet之前未曾料想到的。AlexNet在卷積層和全連接層的輸出均使用ReLU激活函數(shù),從而有效提高訓(xùn)練時(shí)的收斂速度。

AlexNet通過把看似平凡的技術(shù)組合起來取得了驚人的顯著效果。

正是由于AlexNet采用了深層神經(jīng)網(wǎng)絡(luò)的訓(xùn)練思路,并輔以ReLU函數(shù)、Dropout及數(shù)據(jù)擴(kuò)充等操作,使得圖像識(shí)別真正走向了與深度學(xué)習(xí)結(jié)合發(fā)展的方向。

原文標(biāo)題:基于卷積神經(jīng)網(wǎng)絡(luò)的圖像分類算法講解

文章出處:【微信公眾號(hào):機(jī)器視覺智能檢測(cè)】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

審核編輯:湯梓紅

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4782

    瀏覽量

    101219
  • 算法
    +關(guān)注

    關(guān)注

    23

    文章

    4631

    瀏覽量

    93417

原文標(biāo)題:基于卷積神經(jīng)網(wǎng)絡(luò)的圖像分類算法講解

文章出處:【微信號(hào):vision263com,微信公眾號(hào):新機(jī)器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請(qǐng)注明出處。

收藏 人收藏

    評(píng)論

    相關(guān)推薦

    xgboost在圖像分類中的應(yīng)用

    和易用性,在各種機(jī)器學(xué)習(xí)任務(wù)中得到了廣泛應(yīng)用,包括分類、回歸和排序問題。在圖像分類領(lǐng)域,盡管深度學(xué)習(xí)模型(如卷積神經(jīng)網(wǎng)絡(luò)CNN)占據(jù)主導(dǎo)地位,但XGBoost仍然有其獨(dú)特的應(yīng)用價(jià)值,特別是在數(shù)據(jù)量較小或需要快速原型開發(fā)的場(chǎng)景中。
    的頭像 發(fā)表于 01-19 11:16 ?383次閱讀

    ?ISP算法及架構(gòu)分析介紹

    一、ISP算法及架構(gòu)分析介紹 ISP即Image Signal Processor,是一種圖像處理架構(gòu),不是我們用的下載器。 ISP其實(shí)算是圖像處理的一個(gè)特例,一般應(yīng)用于前端設(shè)備(相對(duì)
    的頭像 發(fā)表于 11-26 10:05 ?689次閱讀
    ?ISP<b class='flag-5'>算法</b>及架構(gòu)分析<b class='flag-5'>介紹</b>

    使用卷積神經(jīng)網(wǎng)絡(luò)進(jìn)行圖像分類的步驟

    使用卷積神經(jīng)網(wǎng)絡(luò)(CNN)進(jìn)行圖像分類是一個(gè)涉及多個(gè)步驟的過程。 1. 問題定義 確定目標(biāo) :明確你想要分類圖像類型,例如貓和狗、不同的植物種類等。 數(shù)據(jù)需求 :確定需要多少數(shù)據(jù)以及
    的頭像 發(fā)表于 11-15 15:01 ?407次閱讀

    主動(dòng)學(xué)習(xí)在圖像分類技術(shù)中的應(yīng)用:當(dāng)前狀態(tài)與未來展望

    本文對(duì)近年來提出的主動(dòng)學(xué)習(xí)圖像分類算法進(jìn)行了詳細(xì)綜述,并根據(jù)所用樣本數(shù)據(jù)處理及模型優(yōu)化方案,將現(xiàn)有算法分為三類:基于數(shù)據(jù)增強(qiáng)的算法,包括利用
    的頭像 發(fā)表于 11-14 10:12 ?490次閱讀
    主動(dòng)學(xué)習(xí)在<b class='flag-5'>圖像</b><b class='flag-5'>分類</b>技術(shù)中的應(yīng)用:當(dāng)前狀態(tài)與未來展望

    圖像識(shí)別算法有哪幾種

    圖像識(shí)別算法是計(jì)算機(jī)視覺領(lǐng)域的核心技術(shù)之一,它通過分析和處理圖像數(shù)據(jù),實(shí)現(xiàn)對(duì)圖像中的目標(biāo)、場(chǎng)景和物體的識(shí)別和分類。
    的頭像 發(fā)表于 07-16 11:22 ?1411次閱讀

    圖像識(shí)別算法都有哪些方法

    圖像識(shí)別算法是計(jì)算機(jī)視覺領(lǐng)域的核心任務(wù)之一,它涉及到從圖像中提取特征并進(jìn)行分類、識(shí)別和分析的過程。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,圖像識(shí)別
    的頭像 發(fā)表于 07-16 11:14 ?6105次閱讀

    圖像識(shí)別算法的提升有哪些

    引言 圖像識(shí)別是計(jì)算機(jī)視覺領(lǐng)域的核心任務(wù)之一,旨在使計(jì)算機(jī)能夠自動(dòng)地識(shí)別和理解圖像中的內(nèi)容。隨著計(jì)算機(jī)硬件的發(fā)展和深度學(xué)習(xí)技術(shù)的突破,圖像識(shí)別算法的性能得到了顯著提升。本文將
    的頭像 發(fā)表于 07-16 11:12 ?749次閱讀

    圖像識(shí)別算法的優(yōu)缺點(diǎn)有哪些

    圖像識(shí)別算法是一種利用計(jì)算機(jī)視覺技術(shù)對(duì)圖像進(jìn)行分析和理解的方法,它在許多領(lǐng)域都有廣泛的應(yīng)用,如自動(dòng)駕駛、醫(yī)療診斷、安全監(jiān)控等。然而,圖像識(shí)別算法
    的頭像 發(fā)表于 07-16 11:09 ?1939次閱讀

    圖像識(shí)別算法的核心技術(shù)是什么

    圖像識(shí)別算法是計(jì)算機(jī)視覺領(lǐng)域的一個(gè)重要研究方向,其目標(biāo)是使計(jì)算機(jī)能夠像人類一樣理解和識(shí)別圖像中的內(nèi)容。圖像識(shí)別算法的核心技術(shù)包括以下幾個(gè)方面
    的頭像 發(fā)表于 07-16 11:02 ?782次閱讀

    opencv圖像識(shí)別有什么算法

    OpenCV(Open Source Computer Vision Library)是一個(gè)開源的計(jì)算機(jī)視覺和機(jī)器學(xué)習(xí)軟件庫(kù),提供了大量的圖像處理和計(jì)算機(jī)視覺相關(guān)的算法。以下是一些常見的OpenCV
    的頭像 發(fā)表于 07-16 10:40 ?1230次閱讀

    經(jīng)典卷積網(wǎng)絡(luò)模型介紹

    經(jīng)典卷積網(wǎng)絡(luò)模型在深度學(xué)習(xí)領(lǐng)域,尤其是在計(jì)算機(jī)視覺任務(wù)中,扮演著舉足輕重的角色。這些模型通過不斷演進(jìn)和創(chuàng)新,推動(dòng)了圖像處理、目標(biāo)檢測(cè)、圖像生成、語義分割等多個(gè)領(lǐng)域的發(fā)展。以下將詳細(xì)探討幾個(gè)經(jīng)典
    的頭像 發(fā)表于 07-11 11:45 ?639次閱讀

    計(jì)算機(jī)視覺怎么給圖像分類

    圖像分類是計(jì)算機(jī)視覺領(lǐng)域中的一項(xiàng)核心任務(wù),其目標(biāo)是將輸入的圖像自動(dòng)分配到預(yù)定義的類別集合中。這一過程涉及圖像的特征提取、特征表示以及分類器的
    的頭像 發(fā)表于 07-08 17:06 ?933次閱讀

    一種利用光電容積描記(PPG)信號(hào)和深度學(xué)習(xí)模型對(duì)高血壓分類的新方法

    學(xué)習(xí)方法來對(duì)高血壓的四個(gè)階段進(jìn)行分類。這里采用的分類方法是:Alexnet、Resnet -50、VGG-16和新的模型:AvgPool_VGG-16。使用這些算法時(shí)要考慮到數(shù)據(jù)集的數(shù)
    發(fā)表于 05-11 20:01

    OpenAI發(fā)布圖像檢測(cè)分類器,可區(qū)分AI生成圖像與實(shí)拍照片

    據(jù)OpenAI介紹,初步測(cè)試結(jié)果表明,該分類器在辨別非AI生成圖像與DALL·E 3生成圖像時(shí),成功率高達(dá)近98%,僅有不到0.5%的非AI圖像
    的頭像 發(fā)表于 05-09 09:57 ?527次閱讀

    基于FPGA的常見的圖像算法模塊總結(jié)

    意在給大家補(bǔ)充一下基于FPGA的圖像算法基礎(chǔ),于是講解了一下常見的圖像算法模塊,經(jīng)過個(gè)人的總結(jié),將知識(shí)點(diǎn)分布如下所示。
    的頭像 發(fā)表于 04-28 11:45 ?669次閱讀
    基于FPGA的常見的<b class='flag-5'>圖像</b><b class='flag-5'>算法</b>模塊總結(jié)