Part.1、引言
人類感知客觀世界的信息,有90%來源于視覺,而光學(xué)成像技術(shù)的發(fā)展則大大擴(kuò)展了人類的視覺能力,使之能上觀百億光年之外的天體運行、下察比頭發(fā)絲直徑還小萬倍的分子結(jié)構(gòu)。事實上,只要大家看看自己的智能手機(jī),就能意識到光學(xué)成像技術(shù)與我們工作生活相關(guān)的密切程度。計算光學(xué)成像是光學(xué)成像與最優(yōu)化算法、人工智能、信息論等多學(xué)科交叉研究方向,吸引著越來越多學(xué)術(shù)和工業(yè)界人員的興趣。但我們在與同行交流的過程中,也發(fā)現(xiàn)有不少人認(rèn)為這是數(shù)字圖像處理技術(shù)。為了澄清這些誤解,本文將簡單介紹計算光學(xué)成像技術(shù)的基本概念、內(nèi)涵和優(yōu)勢。
Part.2、計算光學(xué)成像
計算光學(xué)成像,顧名思義,是把“計算”融入到光學(xué)圖像形成過程中任何一個或者多個環(huán)節(jié)的一類新型的成像技術(shù)或系統(tǒng)。光學(xué)圖像的形成與場景/物體的照明模式、系統(tǒng)的光學(xué)傳遞函數(shù)、像感器的采樣三個因素息息相關(guān)。計算通常以編碼的形式體現(xiàn)在這三個環(huán)節(jié)當(dāng)中,對系統(tǒng)的物面、光瞳面和像面(或其共軛面)上的光場進(jìn)行編碼調(diào)制,形成編碼照明、編碼孔徑、編碼像感(圖1)。
圖1. 傳統(tǒng)光學(xué)成像(a)與計算光學(xué)成像(b)的對比示意圖
在硬件上,這些編碼通常可以專門制作編碼板(如微透鏡陣列、微偏振片陣列)或者更靈活的可編程控制的空間光調(diào)制器(如DMD、LCOS、MEMS、LED陣列),甚至利用光波本身的物理屬性(如衍射、相干疊加)來實現(xiàn);在功能上,編碼調(diào)制可以作用于光場的光強(qiáng)、相位、偏振、光譜等要素。顯然,這些編碼器件和函數(shù)的引入會導(dǎo)致幾何光學(xué)意義下光學(xué)成像系統(tǒng)“點到點”物像關(guān)系不再滿足。也即是說,在像感器上所成的像并非“所見即所得”的幾何光學(xué)像,而是經(jīng)過“編碼”后的光強(qiáng)分布,因而需要用適當(dāng)?shù)臄?shù)學(xué)算法來“計算重建”場景/物體的圖像。因此,計算光學(xué)成像系統(tǒng)的設(shè)計需要根據(jù)具體的成像任務(wù)在光學(xué)和算法兩方面進(jìn)行聯(lián)合優(yōu)化。而數(shù)字圖像處理技術(shù)僅對傳統(tǒng)光學(xué)成像系統(tǒng)獲取到的圖像進(jìn)行后處理(如去噪、像素超分、背景虛化)以獲得更好的視覺效果。
Part.3、計算光學(xué)成像的技術(shù)優(yōu)勢
通過光學(xué)與算法的聯(lián)合優(yōu)化設(shè)計,計算光學(xué)成像技術(shù)的優(yōu)勢是全方位的(圖2)。根據(jù)具體的成像任務(wù),計算光學(xué)成像技術(shù)能擴(kuò)展成像要素,對光場的相位/傳播方向、相空間、偏振態(tài)、光譜、時間等參量進(jìn)行成像;也能提升成像性能,可實現(xiàn)分辨率、視場、景深和動態(tài)范圍的提升;也能通過去除透鏡等方式簡化成像系統(tǒng);甚至在低光照、強(qiáng)散射、存在遮擋物等傳統(tǒng)光學(xué)成像技術(shù)難以應(yīng)對的環(huán)境里,都能獲得出色的表現(xiàn)。
圖2. 計算光學(xué)成像技術(shù)的優(yōu)勢列表
Part.4、計算光學(xué)成像中的逆問題及算法
如前所述,因為編碼的引入,像感器探測的結(jié)果往往不是“所見即所得”的,因而要使用算法從編碼探測光強(qiáng)計算重建出物體的圖像。實際上,編碼探測過程即正向過程可以簡單描述為:
其中,x表示待測物體,H(?)表示整個成像系統(tǒng)的編碼探測過程(包含各類噪聲),y為實際探測結(jié)果。使用算法重構(gòu)圖像即通過逆向過程實現(xiàn)的推理,這是一個典型的逆問題。
由于探測過程不可避免的存在信息丟失,上述逆問題往往是病態(tài)的,這將導(dǎo)致解的不唯一性,即直接根據(jù)y無法唯一確定一個x。
常見的逆問題求解算法可分為以下四類:
1、基于模型的方法
當(dāng)成像的模型已知時,可以用這類算法來求解。其核心思路是:通過迭代優(yōu)化的方式,尋找同時滿足探測信號約束和物體先驗約束的結(jié)果。其數(shù)學(xué)表達(dá)式為:
由于逆問題的病態(tài)性,滿足探測信號約束
(也稱為數(shù)據(jù)擬合項)的結(jié)果有很多,通過手動設(shè)計正則項引入諸如稀疏、平滑、支持域等先驗約束,可以從眾多可行解中挑選“最優(yōu)解”[2]。最小二乘法、壓縮感知算法等都屬于此類方法。
2、數(shù)據(jù)驅(qū)動方法
當(dāng)成像的模型難以建立時,可以利用多層神經(jīng)網(wǎng)絡(luò)Rθ從大量數(shù)據(jù)中學(xué)習(xí)豐富的隱式先驗信息,然后利用所得參數(shù)模型完成y到x的映射,即。該方法能夠解決傳統(tǒng)優(yōu)化算法無法解決的一些極端環(huán)境成像問題(如強(qiáng)散射、極弱光),而且這種方法還是非迭代的,能夠?qū)崿F(xiàn)實時成像[3]。但是,該方法也面臨數(shù)據(jù)獲取困難、泛化性及可解釋性差等問題。
3、數(shù)據(jù)和模型聯(lián)合驅(qū)動的方法
當(dāng)成像的模型已知時,可將其融入深度學(xué)習(xí)算法中,從而聯(lián)合使用物理先驗和數(shù)據(jù)先驗。一些聯(lián)合驅(qū)動方法將數(shù)據(jù)預(yù)訓(xùn)練網(wǎng)絡(luò)作為模型驅(qū)動優(yōu)化算法的正則項,包括基于生成網(wǎng)絡(luò)引入數(shù)據(jù)分布先驗(僅在該分布下迭代尋優(yōu))、基于去噪網(wǎng)絡(luò)對迭代搜索結(jié)果進(jìn)行約束等;也可直接使用模型對數(shù)據(jù)預(yù)訓(xùn)練網(wǎng)絡(luò)進(jìn)行微調(diào),此時網(wǎng)絡(luò)可快速輸出重構(gòu)結(jié)果,若其中出現(xiàn)偽影,再通過模型驅(qū)動的方式微調(diào)網(wǎng)絡(luò)參數(shù),兼顧數(shù)據(jù)驅(qū)動方法的時效性和模型驅(qū)動優(yōu)化算法的普適性[4]。這類方法通過協(xié)同使用模型與數(shù)據(jù),有望解決傳統(tǒng)模型驅(qū)動與數(shù)據(jù)驅(qū)動方法的瓶頸問題,從而促進(jìn)計算光學(xué)成像技術(shù)的實際應(yīng)用。
4、光學(xué)神經(jīng)網(wǎng)絡(luò)方法
此前介紹的重構(gòu)算法都是對數(shù)字信號進(jìn)行處理,而基于光學(xué)重構(gòu)的方法可直接處理模擬信號。該方法首先通過數(shù)字計算獲得用于處理模擬信號的光學(xué)模型(如光神經(jīng)網(wǎng)絡(luò)),然后定制加工實體,再將其置于成像系統(tǒng)中處理光信號,從而獲得成像結(jié)果。這種基于先數(shù)字設(shè)計再光學(xué)處理的方法將圖像重構(gòu)速度提升至光速,且在重構(gòu)過程不需要使用計算機(jī),具有低功耗的特點[5]。
Part.5、若干典型的計算光學(xué)成像技術(shù)
下面,我們將列舉若干典型的計算光學(xué)成像技術(shù)。
1、透過散射介質(zhì)成像
傳統(tǒng)成像利用透鏡將物點發(fā)出的光再次匯聚為像點,然而當(dāng)成像路徑上存在云、霧、煙、塵、霾、生物組織等隨機(jī)散射介質(zhì)時,由于光波前因散射而擾亂,傳統(tǒng)的光學(xué)成像方法難以應(yīng)對。計算光學(xué)成像技術(shù)為解決這一難題提供了若干新思路,可以通過波前編碼、數(shù)字全息、散斑的記憶效應(yīng)、深度學(xué)習(xí)等方法實現(xiàn)透過散射介質(zhì)成像(圖3)。
圖3.透過散射介質(zhì)成像的若干典型方法[6]
2、三維成像
我們生活在三維世界中,而傳統(tǒng)成像會將場景中不同深度的圖像耦合到一幅二維平面圖像中,丟失了物體距離觀測面的距離即深度信息(圖4)。三維成像技術(shù)通過設(shè)計主動(如結(jié)構(gòu)光照明、激光雷達(dá)等)或被動(如雙目視覺、編碼孔徑)的編碼方式,使得位于不同深度的物體具有不同的強(qiáng)度響應(yīng),從而實現(xiàn)深度信息的獲取。該技術(shù)在自動駕駛、遙感等領(lǐng)域具有廣泛的應(yīng)用前景。
3、多光譜成像
物質(zhì)在不同波段下的響應(yīng)能夠很好的表征其屬性,就像指紋一樣。傳統(tǒng)彩色相機(jī)只能獲得幾個譜段耦合的圖像,因而無法準(zhǔn)確獲得物質(zhì)的光譜特征。傳統(tǒng)光譜儀需要進(jìn)行逐點掃描,其信息獲取效率受到了極大地限制。光譜成像技術(shù)通過棱鏡分光和孔徑編碼,對不同波段的信息進(jìn)行編碼,然后利用重構(gòu)算法解算不同光譜通道的結(jié)構(gòu)信息,能夠通過單次曝光就能實現(xiàn)多譜段圖像重建。
圖5. RGB圖像與多光譜圖像[8]
4、無透鏡成像
透鏡是傳統(tǒng)成像系統(tǒng)中的基本元件,是導(dǎo)致單反相機(jī)笨重且昂貴、手機(jī)攝像頭凸起的“罪魁禍?zhǔn)住?。無透鏡成像技術(shù)通過使用非常規(guī)“透鏡”(也可直接空間自由傳播),如菲涅爾波帶片、優(yōu)化設(shè)計的透明薄片等,結(jié)合重構(gòu)算法,實現(xiàn)(逼近)復(fù)雜透鏡組方能實現(xiàn)的成像效果。該技術(shù)能夠大幅減少系統(tǒng)的空間體積和重量,對于實現(xiàn)商業(yè)產(chǎn)品的輕薄化具有重要意義。
5、單像素成像
傳統(tǒng)成像使用千萬像素的面陣像感器對光場強(qiáng)度進(jìn)行采樣,此時攜帶物體信息的光被分到眾多像素單元,為保證成像質(zhì)量,往往需要保證較高的光照度。此外,由于工藝的限制,在一些特殊波段如X-ray、THz,人們難以制備高像素分辨的面陣像感器。單像素成像通過使用DMD、SLM、LED、旋轉(zhuǎn)的毛玻璃等調(diào)制器件實現(xiàn)多次二維空間圖像信息編碼,并使用僅具有單個像素的探測器獲得一維時序光強(qiáng)漲落信號,然后利用算法重構(gòu)獲得二維圖像。由于所有光子都被一個像素收集且單個像素的探測器容易制備,單像素成像具有探測靈敏度高、適用于特殊波段成像的優(yōu)勢。
圖7. 面陣探測與單像素探測[10]
Part.6、結(jié)束語
計算光學(xué)成像新機(jī)制、新算法、新問題不斷涌現(xiàn),已然成為光學(xué)工程領(lǐng)域的一個熱門研究方向。國內(nèi)外從事相關(guān)研究的科研工作者越來越多,也正是在整個領(lǐng)域的推動下,該方向正在逐步邁入實用化、智能化的發(fā)展階段。本文僅能如蜻蜓點水般交代其基本概念和內(nèi)涵,感興趣的讀者可以閱讀最近出版的一些中外文獻(xiàn)[3, 11,12],以獲得對具體的專題更深入的了解。我們也相信在不久的將來,計算光學(xué)成像技術(shù)將在光信息感知問題中廣泛應(yīng)用,并為科研、醫(yī)療、安防、工業(yè)、交通等領(lǐng)域帶來新的機(jī)遇。
審核編輯:郭婷
-
人工智能
+關(guān)注
關(guān)注
1796文章
47791瀏覽量
240580 -
調(diào)制器
+關(guān)注
關(guān)注
3文章
842瀏覽量
45352 -
成像系統(tǒng)
+關(guān)注
關(guān)注
2文章
199瀏覽量
13982
原文標(biāo)題:計算光學(xué)成像技術(shù)淺談
文章出處:【微信號:bdtdsj,微信公眾號:中科院半導(dǎo)體所】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。
發(fā)布評論請先 登錄
相關(guān)推薦
評論