欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

深度學習跟蹤DLT (deep learning tracker)

jf_96884364 ? 來源:代碼的路 ? 作者:代碼的路 ? 2023-01-12 10:42 ? 次閱讀

原文鏈接

1 粒子濾波(particle filtering)

粒子濾波是對預測粒子進行評價,添加不同的權(quán)重,越接近于真實狀態(tài)的粒子,其權(quán)重越大;否則,就加的權(quán)重小一些。

步驟:

(1)初始狀態(tài):開始認為x(0)在全狀態(tài)空間內(nèi)平均分布。然后將所有采樣輸入狀態(tài)轉(zhuǎn)移方程,得到預測粒子。

(2)預測階段:粒子濾波首先根據(jù)x(t-1)的概率分布生成大量的采樣,這些采樣就稱之為粒子。那么這些采樣在狀態(tài)空間中的分布實際是x(t-1)的概率分布了。接下來依據(jù)狀態(tài)轉(zhuǎn)移方程加上控制量可以對每一粒子得到一個預測粒子。

(3)校正階段:觀測值y到達后,利用觀測方程即條件概率P(y|xi),對所有的粒子進行評價。這個條件概率代表了假設真實狀態(tài)x(t)取第i個粒子xi時獲得觀測y的概率。令這個條件概率為第i個粒子的權(quán)重。越有可能獲得觀測y的粒子,獲得的權(quán)重越高。

(4)重采樣:根據(jù)粒子權(quán)重對粒子進行篩選,篩選過程中,既要大量保留權(quán)重大的粒子,又要有一小部分權(quán)重小的粒子。而這些重采樣后的粒子,就代表了真實狀態(tài)的概率分布。

2 DLT框架

粒子濾波是完成粒子的隨機擾動和擴散(在一幀圖像中選出多個候選區(qū))過程后,判斷**(measure)哪些粒子接近實際粒子(對候選區(qū)進行確認),找權(quán)重最大的粒子。用權(quán)重最大的粒子+上一幀已知的跟蹤結(jié)果=完成當前幀跟蹤。即DLT通過粒子濾波+measure分類器完成跟蹤。**

3 measure 分類器

measure分類器由自編碼器和sigmoid層形成。自編碼器(auto encoder)包括編碼部分(encoder)和解碼部分(decoder)。

自編碼器詳細介紹

sigmoid部分訓練主要是為了得到sigmoid層與encoder層連接的200多個參數(shù)。

相關(guān)資源

論文下載:http://winsty.net/papers/dlt.pdf

代碼下載:http://winsty.net/dlt/DLTcode.zip

數(shù)據(jù)集下載:http://winsty.net/dlt/woman.zip

學習更多編程知識,請關(guān)注我的公眾號:

[代碼的路]

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 編碼器
    +關(guān)注

    關(guān)注

    45

    文章

    3675

    瀏覽量

    135326
  • 編程
    +關(guān)注

    關(guān)注

    88

    文章

    3640

    瀏覽量

    94040
  • 粒子濾波
    +關(guān)注

    關(guān)注

    0

    文章

    10

    瀏覽量

    8095
  • 深度學習
    +關(guān)注

    關(guān)注

    73

    文章

    5518

    瀏覽量

    121613
  • DLT
    DLT
    +關(guān)注

    關(guān)注

    0

    文章

    16

    瀏覽量

    5316
收藏 人收藏

    評論

    相關(guān)推薦

    NPU在深度學習中的應用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學習作為其核心驅(qū)動力之一,已經(jīng)在眾多領(lǐng)域展現(xiàn)出了巨大的潛力和價值。NPU(Neural Processing Unit,神經(jīng)網(wǎng)絡處理單元)是專門為深度學習
    的頭像 發(fā)表于 11-14 15:17 ?956次閱讀

    一種基于深度學習的二維拉曼光譜算法

    近日,天津大學精密儀器與光電子工程學院的光子芯片實驗室提出了一種基于深度學習的二維拉曼光譜算法,成果以“Rapid and accurate bacteria identification
    的頭像 發(fā)表于 11-07 09:08 ?313次閱讀
    一種基于<b class='flag-5'>深度</b><b class='flag-5'>學習</b>的二維拉曼光譜算法

    GPU深度學習應用案例

    GPU在深度學習中的應用廣泛且重要,以下是一些GPU深度學習應用案例: 一、圖像識別 圖像識別是深度學習
    的頭像 發(fā)表于 10-27 11:13 ?523次閱讀

    AI大模型與深度學習的關(guān)系

    AI大模型與深度學習之間存在著密不可分的關(guān)系,它們互為促進,相輔相成。以下是對兩者關(guān)系的介紹: 一、深度學習是AI大模型的基礎(chǔ) 技術(shù)支撐 :深度
    的頭像 發(fā)表于 10-23 15:25 ?1397次閱讀

    深度神經(jīng)網(wǎng)絡在雷達系統(tǒng)中的應用

    深度神經(jīng)網(wǎng)絡(Deep Neural Networks,DNN)在雷達系統(tǒng)中的應用近年來取得了顯著進展,為雷達信號處理、目標檢測、跟蹤以及識別等領(lǐng)域帶來了革命性的變化。以下將詳細探討深度
    的頭像 發(fā)表于 07-15 11:09 ?898次閱讀

    ESP32 深度睡眠

    使用的是ESP32S2 idf 5.2.2 官方代碼歷程deep_sleep 進入深度睡眠 睡眠后功耗為1.9mA,一直降不下去。
    發(fā)表于 07-11 09:50

    深度學習中的時間序列分類方法

    時間序列分類(Time Series Classification, TSC)是機器學習深度學習領(lǐng)域的重要任務之一,廣泛應用于人體活動識別、系統(tǒng)監(jiān)測、金融預測、醫(yī)療診斷等多個領(lǐng)域。隨著深度
    的頭像 發(fā)表于 07-09 15:54 ?1202次閱讀

    深度學習中的無監(jiān)督學習方法綜述

    深度學習作為機器學習領(lǐng)域的一個重要分支,近年來在多個領(lǐng)域取得了顯著的成果,特別是在圖像識別、語音識別、自然語言處理等領(lǐng)域。然而,深度學習模型
    的頭像 發(fā)表于 07-09 10:50 ?985次閱讀

    深度學習與nlp的區(qū)別在哪

    深度學習和自然語言處理(NLP)是計算機科學領(lǐng)域中兩個非常重要的研究方向。它們之間既有聯(lián)系,也有區(qū)別。本文將介紹深度學習與NLP的區(qū)別。 深度
    的頭像 發(fā)表于 07-05 09:47 ?1083次閱讀

    深度學習的基本原理與核心算法

    隨著大數(shù)據(jù)時代的到來,傳統(tǒng)機器學習方法在處理復雜模式上的局限性日益凸顯。深度學習Deep Learning)作為一種新興的人工智能技術(shù),以
    的頭像 發(fā)表于 07-04 11:44 ?2567次閱讀

    人工智能、機器學習深度學習是什么

    在科技日新月異的今天,人工智能(Artificial Intelligence, AI)、機器學習(Machine Learning, ML)和深度學習
    的頭像 發(fā)表于 07-03 18:22 ?1466次閱讀

    深度學習與傳統(tǒng)機器學習的對比

    在人工智能的浪潮中,機器學習深度學習無疑是兩大核心驅(qū)動力。它們各自以其獨特的方式推動著技術(shù)的進步,為眾多領(lǐng)域帶來了革命性的變化。然而,盡管它們都屬于機器學習的范疇,但
    的頭像 發(fā)表于 07-01 11:40 ?1561次閱讀

    深度解析深度學習下的語義SLAM

    隨著深度學習技術(shù)的興起,計算機視覺的許多傳統(tǒng)領(lǐng)域都取得了突破性進展,例如目標的檢測、識別和分類等領(lǐng)域。近年來,研究人員開始在視覺SLAM算法中引入深度學習技術(shù),使得
    發(fā)表于 04-23 17:18 ?1401次閱讀
    <b class='flag-5'>深度</b>解析<b class='flag-5'>深度</b><b class='flag-5'>學習</b>下的語義SLAM

    Genius Tracker? 安裝速度遠超競爭對手的單軸跟蹤

    來自第三方的時間研究表明?GameChange Solar 的?Genius Tracker? 安裝速度遠超競爭對手的單軸跟蹤器 現(xiàn)場研究表明,照比市場中其他三款有競爭力的?1P 跟蹤
    的頭像 發(fā)表于 04-07 16:49 ?529次閱讀

    為什么深度學習的效果更好?

    導讀深度學習是機器學習的一個子集,已成為人工智能領(lǐng)域的一項變革性技術(shù),在從計算機視覺、自然語言處理到自動駕駛汽車等廣泛的應用中取得了顯著的成功。深度
    的頭像 發(fā)表于 03-09 08:26 ?701次閱讀
    為什么<b class='flag-5'>深度</b><b class='flag-5'>學習</b>的效果更好?