欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

YOLOv8 來啦!一文帶你解讀 YOLO"內(nèi)卷"期的模型選型以及在 NGC 飛槳容器中快速體驗(yàn)!

NVIDIA英偉達(dá) ? 來源:未知 ? 2023-02-18 01:50 ? 次閱讀

本次為大家?guī)?YOLOv8、PP-YOLOE+等 YOLO 全系列體驗(yàn)。歡迎廣大開發(fā)者使用 NVIDIA 與飛槳聯(lián)合深度適配的 NGC 飛槳容器,在 NVIDIA GPU 上體驗(yàn) PaddleDetection v2.5 的新特性。

PaddleDetection 快速體驗(yàn) YOLO 全系列模型

回顧整個虎年,堪稱 YOLO 內(nèi)卷元年,各路 YOLO 系列神仙打架,各顯神通。一開始大部分用戶做項(xiàng)目做實(shí)驗(yàn)還是使用的 YOLOv5,然后 YOLOv6、YOLOv7、PP-YOLOE+、DAMO-YOLO、RTMDet 就接踵而至,于是就在自己的數(shù)據(jù)集逐一嘗試,好不容易把這些下餃子式的 YOLO 模型訓(xùn)練完測試完,忙完工作準(zhǔn)備回家過年時,YOLOv8 又閃電發(fā)布,YOLOv6 又更新了 3.0 版本...用戶還得跟進(jìn)繼續(xù)訓(xùn)練測試,其實(shí)很多時候就是重復(fù)工作。此外換模型訓(xùn)練調(diào)參也會引入更多的不確定性,而且往往業(yè)務(wù)數(shù)據(jù)集大則幾十萬張圖片,重訓(xùn)成本很高,但訓(xùn)完了新的精度不一定更高,速度指標(biāo)在特定機(jī)器環(huán)境上也未必可觀,參數(shù)量、計(jì)算量的變化尤其在邊緣設(shè)備上也不能忽視。所以在這樣的內(nèi)卷期,作為開發(fā)者我們應(yīng)該怎么選擇一個適合自己的模型呢?

41ebb9c2-aeea-11ed-bfe3-dac502259ad0.png

為了方便統(tǒng)一 YOLO 系列模型的開發(fā)測試基準(zhǔn),以及模型選型,百度飛槳推出了 PaddleYOLO 開源模型庫,支持 YOLO 系列模型一鍵快速切換,并提供對應(yīng) ONNX 模型文件,充分滿足各類部署需求。此外 YOLOv5、YOLOv6、YOLOv7 和 YOLOv8 在評估和部署過程中使用了不同的后處理配置,因而可能造成評估結(jié)果虛高,而這些模型在 PaddleYOLO 中實(shí)現(xiàn)了統(tǒng)一,保證實(shí)際部署效果和模型評估指標(biāo)的一致性,并對這幾類模型的代碼進(jìn)行了重構(gòu),統(tǒng)一了代碼風(fēng)格,提高了代碼易讀性。下面的講解內(nèi)容也將圍繞 PaddleYOLO 相關(guān)測試數(shù)據(jù)進(jìn)行分析。

完整教程文檔及模型下載鏈接

https://github.com/PaddlePaddle/PaddleDetection/blob/release/2.5/docs/feature_models/PaddleYOLO_MODEL.md

YOLO 系列多硬件部署示例下載鏈接

https://github.com/PaddlePaddle/FastDeploy/blob/develop/examples/vision/detection/paddledetection

總體來說,選擇合適的模型,要明確自己項(xiàng)目的要求和標(biāo)準(zhǔn),精度和速度一般是最重要的兩個指標(biāo),但還有模型參數(shù)量、FLOPs 計(jì)算量等也需要考慮。接下來就具體講一講這幾個關(guān)鍵點(diǎn)。

42216536-aeea-11ed-bfe3-dac502259ad0.jpg424e6a4a-aeea-11ed-bfe3-dac502259ad0.jpg

STEP1. 看精度

首先是精度,從上圖 YOLO 系列 Benchmark 圖可以看出,幾乎每個模型的目標(biāo)都是希望自己的模型折線在坐標(biāo)軸上是最高的,這也是各個模型的主要競爭點(diǎn)。各家都會訓(xùn)練業(yè)界權(quán)威的 COCO 數(shù)據(jù)集去刷高精度,但是遷移到實(shí)際業(yè)務(wù)數(shù)據(jù)集上時,效果哪個高并不一定,各個模型的泛化能力并不和 COCO 數(shù)據(jù)集上的精度正相關(guān)。COCO 數(shù)據(jù)集精度差距在 1.0 以內(nèi)的模型,其實(shí)業(yè)務(wù)數(shù)據(jù)集上差別不會很大,而且實(shí)際業(yè)務(wù)項(xiàng)目一般也不會只看 mAP 這一個指標(biāo),也可能需要關(guān)注 AP50、AP75、Recall 等指標(biāo)。

要想在業(yè)務(wù)數(shù)據(jù)集達(dá)到較高精度,最重要是一點(diǎn)其實(shí)是加載一個較強(qiáng)的預(yù)訓(xùn)練(pre-trained)權(quán)重。COCO 預(yù)訓(xùn)練權(quán)重可以極快收斂,精度也會遠(yuǎn)高于用 ImageNet 預(yù)訓(xùn)練權(quán)重訓(xùn)的。一個較強(qiáng)的預(yù)訓(xùn)練在下游任務(wù)中的效果會優(yōu)于絕大多數(shù)的調(diào)參和算法優(yōu)化。在 2022 年 9 月份,飛槳官方將 PP-YOLOE 模型升級為 PP-YOLOE+,最重要的一點(diǎn)就是提供了 Objects365 大規(guī)模數(shù)據(jù)集的預(yù)訓(xùn)練權(quán)重,Objects365 數(shù)據(jù)集含有的數(shù)據(jù)量可達(dá)百萬級,在大數(shù)據(jù)量下的訓(xùn)練可以使模型獲得更強(qiáng)大的特征提取能力、更好的泛化能力,在下游任務(wù)上的訓(xùn)練可以達(dá)到更好的效果。基于 Objects365 的 PP-YOLOE+預(yù)訓(xùn)練模型,將學(xué)習(xí)率調(diào)整為原始的十分之一,在 COCO 數(shù)據(jù)集上訓(xùn)練的 epoch 數(shù)從300減少到了只需 80,大大縮短了訓(xùn)練時間的同時,獲得了精度上的顯著提升。實(shí)際業(yè)務(wù)場景中,在遇到比 COCO 更大規(guī)模數(shù)據(jù)集的情況下,傳統(tǒng)的基于 COCO 預(yù)訓(xùn)練的模型就顯得杯水車薪了,無論訓(xùn)練 200 epoch還是80 epoch,模型收斂都會非常慢,而使用 Objects365 預(yù)訓(xùn)練模型可以在較少的訓(xùn)練輪次 epoch 數(shù)如只 30 個 epoch,就實(shí)現(xiàn)快速收斂并且最終精度更高。

此外還有一些自監(jiān)督或半監(jiān)督策略可以繼續(xù)提升檢測精度,但是對于開發(fā)者來講,時間資源、硬件資源消耗極大,以及目前的開發(fā)體驗(yàn)還不是很友好,需要持續(xù)優(yōu)化。

STEP2. 看速度

速度不像精度很快就能復(fù)現(xiàn)證明的,鑒于各大 YOLO 模型發(fā)布的測速環(huán)境也不同,還是得統(tǒng)一測試環(huán)境進(jìn)行實(shí)測。上圖是飛槳團(tuán)隊(duì)在飛槳框架對齊各大模型精度的基礎(chǔ)上,統(tǒng)一在 Tesla T4 上開啟 TensorRT 以 FP16 進(jìn)行的測試。

另外需要注意的是,各大 YOLO 模型發(fā)布的速度只是純模型速度,是去除 NMS(非極大值抑制)的后處理和圖片前處理的,實(shí)際應(yīng)用端到端的耗時還是要加上 NMS 后處理和圖片前處理的時間,以及將數(shù)據(jù)從 CPU 拷貝到 GPU/XPU 等加速卡上和將數(shù)據(jù)從加速卡拷貝到 CPU 的時間。通常 NMS 的參數(shù)對速度影響極大,尤其是 score threshold(置信度閾值) 、NMS 的 IoU 閾值、top-k 框數(shù)(參與 NMS 的最多框數(shù))以及 max_dets(每張圖保留的最多框數(shù)) 等參數(shù)。

比如最常用的是調(diào) score threshold,一般為了提高 Recall(召回率)都會設(shè)置成 0.001、0.01 之類的,但其實(shí)這種置信度范圍的低分框?qū)?shí)際應(yīng)用來說意義不大;如果設(shè)置成 0.1、0.2 則會提前過濾掉眾多的低分框,這樣 NMS 速度和整個端到端部署的速度就會顯著上升,代價是掉一些 mAP,但對于結(jié)果可視化在視覺效果上其實(shí)影響很小。

STEP3. 看參數(shù)量、計(jì)算量

這方面在學(xué)術(shù)研究場景中一般不會著重考慮,但是在產(chǎn)業(yè)應(yīng)用場景中就非常重要,需要注意設(shè)備的硬件限制。例如堆疊一些模塊結(jié)構(gòu)來改造原模型,增加了 2~3 倍參數(shù)量提高了一點(diǎn)點(diǎn) mAP,這是 AI 競賽常用的“套路”,精度雖然有少許提升,但速度變慢了很多,參數(shù)量和 FLOPs 也都變大了很多,對于產(chǎn)業(yè)應(yīng)用來說意義不大,又如一些特殊模塊,例如 ConvNeXt,參數(shù)量極大但是 FLOPs 很小,雖然可以提升精度,但也會降低速度,參數(shù)量也可能受設(shè)備容量限制。

在對資源、顯存及其敏感的場景,除了選擇參數(shù)量較小的模型,也需要考慮和壓縮工具聯(lián)合使用。如下圖所示,在 YOLO 系列模型上,使用 PaddleSlim 自動壓縮工具(ACT)壓縮后,可以在盡量保證精度的同時,降低模型大小和顯存占用,并且該能力已經(jīng)在飛槳全場景高性能 AI 部署工具 FastDeploy 中集成,實(shí)現(xiàn)一鍵壓縮。

426eebe4-aeea-11ed-bfe3-dac502259ad0.png

FastDeploy 快速部署

基于產(chǎn)業(yè)落地部署需求,全場景高性能 AI 部署工具 FastDeploy 統(tǒng)一了飛槳的推理引擎和生態(tài)推理引擎(包括 Paddle Inference、Paddle Lite、TensorRT、Poros 等多推理后端),并融合高性能 NLP 加速庫 FastTokenizer、CV 高新能加速庫 CV-CUDA,實(shí)現(xiàn)了 AI 模型端到端的推理性能優(yōu)化,支持 YOLOv5、YOLOv8、PP-YOLOE+等在內(nèi)的 160 多個產(chǎn)業(yè)級特色模型。支持 NVIDIA Jetson、NVIDIA GPU 等全系列硬件,同時支持高性能服務(wù)化部署,助力企業(yè)用戶快速完成 AI 模型部署。

4297be8e-aeea-11ed-bfe3-dac502259ad0.png

加入 PaddleDetection 技術(shù)交流群,體驗(yàn) NVIDIA NGC + PaddleDetection

入群方式:微信掃描下方二維碼,關(guān)注公眾號,填寫問卷后進(jìn)入微信群隨時進(jìn)行技術(shù)交流,獲取 PaddleDetection 學(xué)習(xí)大禮包

42cb08e8-aeea-11ed-bfe3-dac502259ad0.jpg

NGC 飛槳容器介紹

如果您希望體驗(yàn) PaddleDetection v2.5 的新特性,歡迎使用 NGC 飛槳容器。NVIDIA 與百度飛槳聯(lián)合開發(fā)了 NGC 飛槳容器,將最新版本的飛槳與最新的 NVIDIA 的軟件棧(如 CUDA)進(jìn)行了無縫的集成與性能優(yōu)化,最大程度的釋放飛槳框架在 NVIDIA 最新硬件上的計(jì)算能力。這樣,用戶不僅可以快速開啟 AI 應(yīng)用,專注于創(chuàng)新和應(yīng)用本身,還能夠在 AI 訓(xùn)練和推理任務(wù)上獲得飛槳+NVIDIA 帶來的飛速體驗(yàn)。

最佳的開發(fā)環(huán)境搭建工具 - 容器技術(shù)

  1. 容器其實(shí)是一個開箱即用的服務(wù)器。極大降低了深度學(xué)習(xí)開發(fā)環(huán)境的搭建難度。例如你的開發(fā)環(huán)境中包含其他依賴進(jìn)程(redis,MySQL,Ngnix,selenium-hub 等等),或者你需要進(jìn)行跨操作系統(tǒng)級別的遷移

  2. 容器鏡像方便了開發(fā)者的版本化管理

  3. 容器鏡像是一種易于復(fù)現(xiàn)的開發(fā)環(huán)境載體

  4. 容器技術(shù)支持多容器同時運(yùn)行

42f12744-aeea-11ed-bfe3-dac502259ad0.png

最好的 PaddlePaddle 容器

NGC 飛槳容器針對 NVIDIA GPU 加速進(jìn)行了優(yōu)化,并包含一組經(jīng)過驗(yàn)證的庫,可啟用和優(yōu)化 NVIDIA GPU 性能。此容器還可能包含對 PaddlePaddle 源代碼的修改,以最大限度地提高性能和兼容性。此容器還包含用于加速 ETL (DALI, RAPIDS),、訓(xùn)練(cuDNN, NCCL)和推理(TensorRT)工作負(fù)載的軟件。

PaddlePaddle 容器具有以下優(yōu)點(diǎn):

  1. 適配最新版本的 NVIDIA 軟件棧(例如最新版本 CUDA),更多功能,更高性能

  2. 更新的 Ubuntu 操作系統(tǒng),更好的軟件兼容性

  3. 按月更新

  4. 滿足 NVIDIA NGC 開發(fā)及驗(yàn)證規(guī)范,質(zhì)量管理

通過飛槳官網(wǎng)快速獲取

43132d30-aeea-11ed-bfe3-dac502259ad0.png

環(huán)境準(zhǔn)備

使用 NGC 飛槳容器需要主機(jī)系統(tǒng)(Linux)安裝以下內(nèi)容:

  • Docker 引擎

  • NVIDIA GPU 驅(qū)動程序

  • NVIDIA 容器工具包

有關(guān)支持的版本,請參閱 NVIDIA 框架容器支持矩陣NVIDIA 容器工具包文檔。

不需要其他安裝、編譯或依賴管理。無需安裝 NVIDIA CUDA Toolkit。

NGC 飛槳容器正式安裝:

要運(yùn)行容器,請按照 NVIDIA Containers For Deep Learning Frameworks User’s Guide 中 Running A Container 一章中的說明發(fā)出適當(dāng)?shù)拿睿⒅付ㄗ员?、存儲庫?a target="_blank">標(biāo)簽。有關(guān)使用 NGC 的更多信息,請參閱 NGC 容器用戶指南。如果您有 Docker 19.03 或更高版本,啟動容器的典型命令是:

dockerrun--gpusall--shm-size=1g--ulimitmemlock=-1-it--rm
nvcr.io/nvidia/paddlepaddle:22.08-py3

*詳細(xì)安裝介紹 《NGC 飛槳容器安裝指南》

https://www.paddlepaddle.org.cn/documentation/docs/zh/install/install_NGC_PaddlePaddle_ch.html

*詳細(xì)產(chǎn)品介紹視頻

【飛槳開發(fā)者說|NGC飛槳容器全新上線 NVIDIA產(chǎn)品專家全面解讀】

https://www.bilibili.com/video/BV16B4y1V7ue?share_source=copy_web&vd_source=266ac44430b3656de0c2f4e58b4daf82

飛槳與 NVIDIA NGC 合作介紹

NVIDIA 非常重視中國市場,特別關(guān)注中國的生態(tài)伙伴,而當(dāng)前飛槳擁有超過 470 萬的開發(fā)者。在過去五年里我們緊密合作,深度融合,做了大量適配工作,如下圖所示。

43508b3a-aeea-11ed-bfe3-dac502259ad0.png

今年,我們將飛槳列為 NVIDIA 全球前三的深度學(xué)習(xí)框架合作伙伴。我們在中國已經(jīng)設(shè)立了專門的工程團(tuán)隊(duì)支持,賦能飛槳生態(tài)。

為了讓更多的開發(fā)者能用上基于 NVIDIA 最新的高性能硬件和軟件棧。當(dāng)前,我們正在進(jìn)行全新一代NVIDIA GPU H100的適配工作,以及提高飛槳對 CUDA Operation API 的使用率,讓飛槳的開發(fā)者擁有優(yōu)秀的用戶體驗(yàn)及極致性能。

以上的各種適配,僅僅是讓飛槳的開發(fā)者擁有高性能的推理訓(xùn)練成為可能。但是,這些離行業(yè)開發(fā)者還很遠(yuǎn),門檻還很高,難度還很大。

為此,我們將剛剛這些集成和優(yōu)化工作,整合到三大產(chǎn)品線中。其中 NGC 飛槳容器最為閃亮。

NVIDIA NGC Container – 最佳的飛槳開發(fā)環(huán)境,集成最新的 NVIDIA 工具包(例如 CUDA)

43897c7e-aeea-11ed-bfe3-dac502259ad0.png ? ? ? ?

點(diǎn)擊“閱讀原文”掃描下方海報(bào)二維碼,即可免費(fèi)注冊 GTC 23,切莫錯過這場 AI 和元宇宙時代的技術(shù)大會!


原文標(biāo)題:YOLOv8 來啦!一文帶你解讀 YOLO"內(nèi)卷"期的模型選型以及在 NGC 飛槳容器中快速體驗(yàn)!

文章出處:【微信公眾號:NVIDIA英偉達(dá)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 英偉達(dá)
    +關(guān)注

    關(guān)注

    22

    文章

    3854

    瀏覽量

    92080

原文標(biāo)題:YOLOv8 來啦!一文帶你解讀 YOLO"內(nèi)卷"期的模型選型以及在 NGC 飛槳容器中快速體驗(yàn)!

文章出處:【微信號:NVIDIA_China,微信公眾號:NVIDIA英偉達(dá)】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    RK3568教學(xué)實(shí)驗(yàn)箱上實(shí)現(xiàn)基于YOLOV5的算法物體識別案例詳解

    、實(shí)驗(yàn)?zāi)康?本節(jié)視頻的目的是了解YOLOv5模型的用途及流程,并掌握基于YOLOV5算法實(shí)現(xiàn)物體識別的方法。 二、實(shí)驗(yàn)原理 YOLO(Yo
    發(fā)表于 12-03 14:56

    YOLOv10自定義目標(biāo)檢測之理論+實(shí)踐

    保持先進(jìn)性能的同時,降低了計(jì)算需求。大量實(shí)驗(yàn)表明,YOLOv10 各種模型規(guī)模上提供了更優(yōu)的準(zhǔn)確率-延遲權(quán)衡。 正如讀過我之前文章的朋友所知道的,我分享了使用 YOLO
    的頭像 發(fā)表于 11-16 10:23 ?745次閱讀
    <b class='flag-5'>YOLOv</b>10自定義目標(biāo)檢測之理論+實(shí)踐

    Ubuntu 24.04 LTS上安裝PaddleX

    前面我們介紹了《Windows用遠(yuǎn)程桌面訪問Ubuntu 24.04.1 LTS》本文接著介紹安裝PaddleX。 PaddleX 3.0? 是基于飛框架構(gòu)建的
    的頭像 發(fā)表于 11-11 17:45 ?368次閱讀
    <b class='flag-5'>在</b>Ubuntu 24.04 LTS上安裝<b class='flag-5'>飛</b><b class='flag-5'>槳</b>PaddleX

    YOLOv6LabVIEW的推理部署(含源碼)

    YOLOv6 是美團(tuán)視覺智能部研發(fā)的款目標(biāo)檢測框架,致力于工業(yè)應(yīng)用。如何使用python進(jìn)行該模型的部署,官網(wǎng)已經(jīng)介紹的很清楚了,但是對于如何在LabVIEW實(shí)現(xiàn)該
    的頭像 發(fā)表于 11-06 16:07 ?429次閱讀
    <b class='flag-5'>YOLOv</b>6<b class='flag-5'>在</b>LabVIEW<b class='flag-5'>中</b>的推理部署(含源碼)

    YOLOv8的損失函數(shù)解析

    YOLO長期以來直是目標(biāo)檢測任務(wù)的首選模型。它既快速又準(zhǔn)確。此外,其API簡潔易用。運(yùn)行訓(xùn)練或推斷作業(yè)所需的代碼行數(shù)有限。
    的頭像 發(fā)表于 11-05 17:15 ?1549次閱讀
    <b class='flag-5'>YOLOv8</b><b class='flag-5'>中</b>的損失函數(shù)解析

    凌嵌入式OK3576-C開發(fā)板體驗(yàn)】RKNN神經(jīng)網(wǎng)絡(luò)-YOLO目標(biāo)檢測

    、激活Toolkit2環(huán)境 安裝完環(huán)境后,后續(xù)開發(fā)都需要進(jìn)入到Toolkit2環(huán)境當(dāng)中,base環(huán)境找不到RKNN.API 二、準(zhǔn)備模型 cd Projects/rknn_mod
    發(fā)表于 10-10 09:33

    使用NVIDIA JetPack 6.0和YOLOv8構(gòu)建智能交通應(yīng)用

    進(jìn)行視頻數(shù)據(jù)的接收與存儲;借助 YOLOv8 和 DeepStream AI 感知服務(wù)實(shí)現(xiàn)實(shí)時目標(biāo)檢測和車輛追蹤;車輛移動的時空分析。構(gòu)建好這流程后,將利用 API 生成分析報(bào)告。
    的頭像 發(fā)表于 08-23 16:49 ?566次閱讀
    使用NVIDIA JetPack 6.0和<b class='flag-5'>YOLOv8</b>構(gòu)建智能交通應(yīng)用

    NVIDIA與百度攜手革新汽車風(fēng)阻預(yù)測:DNNFluid-Car模型的崛起

    追求更高效、更環(huán)保的汽車設(shè)計(jì)浪潮,NVIDIA與百度攜手突破傳統(tǒng)界限,共同研發(fā)了款革命性的3D高精度汽車風(fēng)阻預(yù)測
    的頭像 發(fā)表于 07-09 14:56 ?1717次閱讀

    百度發(fā)布心大模型4.0 Turbo與框架3.0,引領(lǐng)AI技術(shù)新篇章

    SUMMIT深度學(xué)習(xí)開發(fā)者大會2024上,向世界展示了百度AI領(lǐng)域的最新成果——心大模型4.0 Turbo和框架3.0,并詳細(xì)披露
    的頭像 發(fā)表于 06-29 16:03 ?738次閱讀

    用OpenVINO C# APIintel平臺部署YOLOv10目標(biāo)檢測模型

    最近YOLO家族又添新成員:YOLOv10,YOLOv10提出了致的雙任務(wù)方法,用于無nms訓(xùn)練的YOLOs,它同時帶來了具有競爭力的
    的頭像 發(fā)表于 06-21 09:23 ?1194次閱讀
    用OpenVINO C# API<b class='flag-5'>在</b>intel平臺部署<b class='flag-5'>YOLOv</b>10目標(biāo)檢測<b class='flag-5'>模型</b>

    使用sophon-demo_v0.1.8_dbb4632_20231116下面的YOLOv8yolov8_bmcv歷程出現(xiàn)段錯誤的原因?

    使用sophon-demo_v0.1.8_dbb4632_20231116下面的YOLOv8yolov8_bmcv歷程,出現(xiàn)段錯誤: 定位到代碼中出錯的函數(shù)是 picDec(h, img_file.c_str(), bmim
    發(fā)表于 05-30 07:37

    OpenVINO? C# API部署YOLOv9目標(biāo)檢測和實(shí)例分割模型

    YOLOv9模型YOLO系列實(shí)時目標(biāo)檢測算法的最新版本,代表著該系列準(zhǔn)確性、速度和效率方面的又
    的頭像 發(fā)表于 04-03 17:35 ?998次閱讀
    OpenVINO? C# API部署<b class='flag-5'>YOLOv</b>9目標(biāo)檢測和實(shí)例分割<b class='flag-5'>模型</b>

    基于OpenCV DNN實(shí)現(xiàn)YOLOv8模型部署與推理演示

    基于OpenCV DNN實(shí)現(xiàn)YOLOv8推理的好處就是套代碼就可以部署Windows10系統(tǒng)、烏班圖系統(tǒng)、Jetson的Jetpack系統(tǒng)
    的頭像 發(fā)表于 03-01 15:52 ?1901次閱讀
    基于OpenCV DNN實(shí)現(xiàn)<b class='flag-5'>YOLOv8</b>的<b class='flag-5'>模型</b>部署與推理演示

    Windows上使用OpenVINO? C# API部署Yolov8-obb實(shí)現(xiàn)任意方向的目標(biāo)檢測

    Ultralytics YOLOv8 基于深度學(xué)習(xí)和計(jì)算機(jī)視覺領(lǐng)域的尖端技術(shù),速度和準(zhǔn)確性方面具有無與倫比的性能。
    的頭像 發(fā)表于 02-22 17:13 ?1332次閱讀
    <b class='flag-5'>在</b>Windows上使用OpenVINO? C# API部署<b class='flag-5'>Yolov8</b>-obb實(shí)現(xiàn)任意方向的目標(biāo)檢測

    OpenCV4.8 C++實(shí)現(xiàn)YOLOv8 OBB旋轉(zhuǎn)對象檢測

    YOLOv8框架在在支持分類、對象檢測、實(shí)例分割、姿態(tài)評估的基礎(chǔ)上更近步,現(xiàn)已經(jīng)支持旋轉(zhuǎn)對象檢測(OBB),基于DOTA數(shù)據(jù)集,支持航拍圖像的15個類別對象檢測,包括車輛、船只、典型各種場地等。包含2800多張圖像、18W個實(shí)例對象。
    的頭像 發(fā)表于 02-22 10:15 ?1883次閱讀
    OpenCV4.8 C++實(shí)現(xiàn)<b class='flag-5'>YOLOv8</b> OBB旋轉(zhuǎn)對象檢測