欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

如何基于計算機視覺實現(xiàn)道路交通計數(shù)

新機器視覺 ? 來源:新機器視覺 ? 2023-06-12 09:43 ? 次閱讀

今天,我們將一起探討如何基于計算機視覺實現(xiàn)道路交通計數(shù)。

在本教程中,我們將僅使用Python和OpenCV,并借助背景減除算法非常簡單地進(jìn)行運動檢測

我們將從以下四個方面進(jìn)行介紹:

1. 用于物體檢測的背景減法算法主要思想。

2. OpenCV圖像過濾器。

3. 利用輪廓檢測物體。

4. 建立進(jìn)一步數(shù)據(jù)處理的結(jié)構(gòu)。

背景扣除算法

cab6df4a-08b1-11ee-962d-dac502259ad0.png

有許多不同的背景扣除算法,但是它們的主要思想都很簡單。

假設(shè)有一個房間的視頻,在某些幀上沒有人和寵物,那么此時的視頻基本為靜態(tài)的,我們將其稱為背景(background_layer)。因此要獲取在視頻上移動的對象,我們只需要:用當(dāng)前幀減去背景即可。

由于光照變化,人為移動物體,或者始終存在移動的人和寵物,我們將無法獲得靜態(tài)幀。在這種情況下,我們從視頻中選出一些圖像幀,如果絕大多數(shù)圖像幀中都具有某個相同的像素點,則此將像素作為background_layer中的一部分。

我們將使用MOG算法進(jìn)行背景扣除

cacad81a-08b1-11ee-962d-dac502259ad0.png

原始幀

代碼如下所示:

import os
import logging
import logging.handlers
import random


import numpy as np
import skvideo.io
import cv2
import matplotlib.pyplot as plt


import utils
# without this some strange errors happen
cv2.ocl.setUseOpenCL(False)
random.seed(123)


# ============================================================================
IMAGE_DIR = "./out"
VIDEO_SOURCE = "input.mp4"
SHAPE = (720, 1280)  # HxW
# ============================================================================


def train_bg_subtractor(inst, cap, num=500):
'''
        BG substractor need process some amount of frames to start giving result
    '''
print ('Training BG Subtractor...')
    i = 0
for frame in cap:
        inst.apply(frame, None, 0.001)
        i += 1
if i >= num:
return cap


def main():
    log = logging.getLogger("main")


# creting MOG bg subtractor with 500 frames in cache
# and shadow detction
    bg_subtractor = cv2.createBackgroundSubtractorMOG2(
        history=500, detectShadows=True)


# Set up image source
# You can use also CV2, for some reason it not working for me
    cap = skvideo.io.vreader(VIDEO_SOURCE)


# skipping 500 frames to train bg subtractor
    train_bg_subtractor(bg_subtractor, cap, num=500)


    frame_number = -1
for frame in cap:
if not frame.any():
            log.error("Frame capture failed, stopping...")
break


        frame_number += 1
        utils.save_frame(frame, "./out/frame_%04d.png" % frame_number)
        fg_mask = bg_subtractor.apply(frame, None, 0.001)
        utils.save_frame(frame, "./out/fg_mask_%04d.png" % frame_number)
# ============================================================================


if __name__ == "__main__":
    log = utils.init_logging()


if not os.path.exists(IMAGE_DIR):
        log.debug("Creating image directory `%s`...", IMAGE_DIR)
        os.makedirs(IMAGE_DIR)


    main()

處理后得到下面的前景圖像

cae5a186-08b1-11ee-962d-dac502259ad0.png

去除背景后的前景圖像

我們可以看出前景圖像上有一些噪音,可以通過標(biāo)準(zhǔn)濾波技術(shù)可以將其消除。

濾波

針對我們現(xiàn)在的情況,我們將需要以下濾波函數(shù):Threshold、Erode、Dilate、Opening、Closing。

首先,我們使用“Closing”來移除區(qū)域中的間隙,然后使用“Opening”來移除個別獨立的像素點,然后使用“Dilate”進(jìn)行擴張以使對象變粗。代碼如下:

def filter_mask(img):
kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
    # Fill any small holes
closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
    # Remove noise
opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel)
    # Dilate to merge adjacent blobs
dilation = cv2.dilate(opening, kernel, iterations=2)
    # threshold
th = dilation[dilation < 240] = 0
return th

處理后的前景如下:

cb054090-08b1-11ee-962d-dac502259ad0.png

利用輪廓進(jìn)行物體檢測

我們將使用cv2.findContours函數(shù)對輪廓進(jìn)行檢測。我們在使用的時候可以選擇的參數(shù)為:

cv2.CV_RETR_EXTERNAL------僅獲取外部輪廓。

cv2.CV_CHAIN_APPROX_TC89_L1------使用Teh-Chin鏈逼近算法(更快)

代碼如下:

def get_centroid(x, y, w, h):
x1 = int(w / 2)
y1 = int(h / 2)
cx = x + x1
cy = y + y1
return (cx, cy)


def detect_vehicles(fg_mask, min_contour_width=35, min_contour_height=35):
matches = []
      # finding external contours
im, contours, hierarchy = cv2.findContours(
fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_L1)
      # filtering by with, height
for (i, contour) in enumerate(contours):
(x, y, w, h) = cv2.boundingRect(contour)
contour_valid = (w >= min_contour_width) and (
h >= min_contour_height)
if not contour_valid:
continue
          # getting center of the bounding box
centroid = get_centroid(x, y, w, h)
matches.append(((x, y, w, h), centroid))
return matches

建立數(shù)據(jù)處理框架

我們都知道在ML和CV中,沒有一個算法可以處理所有問題。即使存在這種算法,我們也不會使用它,因為它很難大規(guī)模有效。例如幾年前Netflix公司用300萬美元的獎金懸賞最佳電影推薦算法。有一個團(tuán)隊完成這個任務(wù),但是他們的推薦算法無法大規(guī)模運行,因此其實對公司毫無用處。但是,Netflix公司仍獎勵了他們100萬美元。

接下來我們來建立解決當(dāng)前問題的框架,這樣可以使數(shù)據(jù)的處理更加方便

class PipelineRunner(object):
'''
          Very simple pipline.
          Just run passed processors in order with passing context from one to 
          another.
          You can also set log level for processors.
      '''
def __init__(self, pipeline=None, log_level=logging.DEBUG):
self.pipeline = pipeline or []
self.context = {}
self.log = logging.getLogger(self.__class__.__name__)
self.log.setLevel(log_level)
self.log_level = log_level
self.set_log_level()
def set_context(self, data):
self.context = data
def add(self, processor):
if not isinstance(processor, PipelineProcessor):
              raise Exception(
'Processor should be an isinstance of PipelineProcessor.')
          processor.log.setLevel(self.log_level)
self.pipeline.append(processor)


def remove(self, name):
for i, p in enumerate(self.pipeline):
if p.__class__.__name__ == name:
                  del self.pipeline[i]
return True
return False


def set_log_level(self):
for p in self.pipeline:
              p.log.setLevel(self.log_level)


def run(self):
for p in self.pipeline:
self.context = p(self.context) 
self.log.debug("Frame #%d processed.", self.context['frame_number'])
return self.context


class PipelineProcessor(object):
'''
          Base class for processors.
      '''
def __init__(self):
self.log = logging.getLogger(self.__class__.__name__)

首先我們獲取一張處理器運行順序的列表,讓每個處理器完成一部分工作,在案順序完成執(zhí)行以獲得最終結(jié)果。

我們首先創(chuàng)建輪廓檢測處理器。輪廓檢測處理器只需將前面的背景扣除,濾波和輪廓檢測部分合并在一起即可,代碼如下所示:

class ContourDetection(PipelineProcessor):
'''
          Detecting moving objects.
          Purpose of this processor is to subtrac background, get moving objects
          and detect them with a cv2.findContours method, and then filter off-by
          width and height. 
          bg_subtractor - background subtractor isinstance.
          min_contour_width - min bounding rectangle width.
          min_contour_height - min bounding rectangle height.
          save_image - if True will save detected objects mask to file.
          image_dir - where to save images(must exist).        
      '''


def __init__(self, bg_subtractor, min_contour_width=35, min_contour_height=35, save_image=False, image_dir='images'):
          super(ContourDetection, self).__init__()
          self.bg_subtractor = bg_subtractor
          self.min_contour_width = min_contour_width
          self.min_contour_height = min_contour_height
          self.save_image = save_image
          self.image_dir = image_dir


def filter_mask(self, img, a=None):
'''
              This filters are hand-picked just based on visual tests
          '''
          kernel = cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (2, 2))
# Fill any small holes
          closing = cv2.morphologyEx(img, cv2.MORPH_CLOSE, kernel)
# Remove noise
          opening = cv2.morphologyEx(closing, cv2.MORPH_OPEN, kernel)
# Dilate to merge adjacent blobs
          dilation = cv2.dilate(opening, kernel, iterations=2)
return dilation


def detect_vehicles(self, fg_mask, context):
          matches = []
# finding external contours
          im2, contours, hierarchy = cv2.findContours(
              fg_mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_L1)
for (i, contour) in enumerate(contours):
              (x, y, w, h) = cv2.boundingRect(contour)
              contour_valid = (w >= self.min_contour_width) and (
                  h >= self.min_contour_height)
if not contour_valid:
continue
              centroid = utils.get_centroid(x, y, w, h)
              matches.append(((x, y, w, h), centroid))
return matches


def __call__(self, context):
          frame = context['frame'].copy()
          frame_number = context['frame_number']
          fg_mask = self.bg_subtractor.apply(frame, None, 0.001)
# just thresholding values
          fg_mask[fg_mask < 240] = 0
          fg_mask = self.filter_mask(fg_mask, frame_number)
if self.save_image:
              utils.save_frame(fg_mask, self.image_dir +
"/mask_%04d.png" % frame_number, flip=False)
          context['objects'] = self.detect_vehicles(fg_mask, context)
          context['fg_mask'] = fg_mask
return contex

現(xiàn)在,讓我們創(chuàng)建一個處理器,該處理器將找出不同的幀上檢測到的相同對象,創(chuàng)建路徑,并對到達(dá)出口區(qū)域的車輛進(jìn)行計數(shù)。代碼如下所示:

'''
        Counting vehicles that entered in exit zone.


        Purpose of this class based on detected object and local cache create
        objects pathes and count that entered in exit zone defined by exit masks.


        exit_masks - list of the exit masks.
        path_size - max number of points in a path.
        max_dst - max distance between two points.
    '''


def __init__(self, exit_masks=[], path_size=10, max_dst=30, x_weight=1.0, y_weight=1.0):
super(VehicleCounter, self).__init__()


self.exit_masks = exit_masks


self.vehicle_count = 0
self.path_size = path_size
self.pathes = []
self.max_dst = max_dst
self.x_weight = x_weight
self.y_weight = y_weight


def check_exit(self, point):
for exit_mask in self.exit_masks:
try:
if exit_mask[point[1]][point[0]] == 255:
return True
except:
return True
return False


def __call__(self, context):
        objects = context['objects']
        context['exit_masks'] = self.exit_masks
        context['pathes'] = self.pathes
        context['vehicle_count'] = self.vehicle_count
if not objects:
return context


        points = np.array(objects)[:, 0:2]
        points = points.tolist()


# add new points if pathes is empty
if not self.pathes:
for match in points:
self.pathes.append([match])


else:
# link new points with old pathes based on minimum distance between
# points
            new_pathes = []


for path in self.pathes:
                _min = 999999
                _match = None
for p in points:
if len(path) == 1:
# distance from last point to current
                        d = utils.distance(p[0], path[-1][0])
else:
# based on 2 prev points predict next point and calculate
# distance from predicted next point to current
                        xn = 2 * path[-1][0][0] - path[-2][0][0]
                        yn = 2 * path[-1][0][1] - path[-2][0][1]
                        d = utils.distance(
                            p[0], (xn, yn),
                            x_weight=self.x_weight,
                            y_weight=self.y_weight
                        )


if d < _min:
                        _min = d
                        _match = p


if _match and _min <= self.max_dst:
                    points.remove(_match)
                    path.append(_match)
                    new_pathes.append(path)


# do not drop path if current frame has no matches
if _match is None:
                    new_pathes.append(path)


self.pathes = new_pathes


# add new pathes
if len(points):
for p in points:
# do not add points that already should be counted
if self.check_exit(p[1]):
                        continue
self.pathes.append([p])


# save only last N points in path
for i, _ in enumerate(self.pathes):
self.pathes[i] = self.pathes[i][self.path_size * -1:]


# count vehicles and drop counted pathes:
        new_pathes = []
for i, path in enumerate(self.pathes):
            d = path[-2:]


if (
# need at list two points to count
                len(d) >= 2 and
# prev point not in exit zone
not self.check_exit(d[0][1]) and
# current point in exit zone
self.check_exit(d[1][1]) and
# path len is bigger then min
self.path_size <= len(path)
            ):
self.vehicle_count += 1
else:
# prevent linking with path that already in exit zone
                add = True
for p in path:
if self.check_exit(p[1]):
                        add = False
break
if add:
                    new_pathes.append(path)


self.pathes = new_pathes


        context['pathes'] = self.pathes
        context['objects'] = objects
        context['vehicle_count'] = self.vehicle_count


self.log.debug('#VEHICLES FOUND: %s' % self.vehicle_count)


return context

上面的代碼有點復(fù)雜,因此讓我們一個部分一個部分的介紹一下。

cb1d7ee4-08b1-11ee-962d-dac502259ad0.jpg

上面的圖像中綠色的部分是出口區(qū)域。我們在這里對車輛進(jìn)行計數(shù),只有當(dāng)車輛移動的長度超過3個點我們才進(jìn)行計算

我們使用掩碼來解決這個問題,因為它比使用矢量算法有效且簡單得多。只需使用“二進(jìn)制和”即可選出車輛區(qū)域中點。設(shè)置方式如下:

EXIT_PTS = np.array([
      [[732, 720], [732, 590], [1280, 500], [1280, 720]],
      [[0, 400], [645, 400], [645, 0], [0, 0]]
  ])


base = np.zeros(SHAPE + (3,), dtype='uint8')
  exit_mask = cv2.fillPoly(base, EXIT_PTS, (255, 255, 255))[:, :, 0]    

現(xiàn)在我們將檢測到的點鏈接起來。

對于第一幀圖像,我們將所有點均添加為新路徑。

接下來,如果len(path)== 1,我們在新檢測到的對象中找到與每條路徑最后一點距離最近的對象。

如果len(path)> 1,則使用路徑中的最后兩個點,即在同一條線上預(yù)測新點,并找到該點與當(dāng)前點之間的最小距離。

具有最小距離的點將添加到當(dāng)前路徑的末端并從列表中刪除。如果在此之后還剩下一些點,我們會將其添加為新路徑。這個過程中我們還會限制路徑中的點數(shù)。

new_pathes = []
for path in self.pathes:
      _min = 999999
      _match = None
for p in points:
if len(path) == 1:
              # distance from last point to current
              d = utils.distance(p[0], path[-1][0])
else:
              # based on 2 prev points predict next point and calculate
              # distance from predicted next point to current
              xn = 2 * path[-1][0][0] - path[-2][0][0]
              yn = 2 * path[-1][0][1] - path[-2][0][1]
              d = utils.distance(
                  p[0], (xn, yn),
                  x_weight=self.x_weight,
                  y_weight=self.y_weight
              )


if d < _min:
              _min = d
              _match = p


if _match and _min <= self.max_dst:
          points.remove(_match)
          path.append(_match)
          new_pathes.append(path)


      # do not drop path if current frame has no matches
if _match is None:
          new_pathes.append(path)


self.pathes = new_pathes


  # add new pathes
if len(points):
for p in points:
          # do not add points that already should be counted
if self.check_exit(p[1]):
continue
self.pathes.append([p])


  # save only last N points in path
for i, _ in enumerate(self.pathes):
self.pathes[i] = self.pathes[i][self.path_size * -1:]

現(xiàn)在,我們將嘗試計算進(jìn)入出口區(qū)域的車輛。為此,我們需獲取路徑中的最后2個點,并檢查len(path)是否應(yīng)大于限制。

# count vehicles and drop counted pathes:
    new_pathes = []
for i, path in enumerate(self.pathes):
        d = path[-2:]
if (
# need at list two points to count
            len(d) >= 2 and
# prev point not in exit zone
            not self.check_exit(d[0][1]) and
# current point in exit zone
self.check_exit(d[1][1]) and
# path len is bigger then min
self.path_size <= len(path)
        ):
self.vehicle_count += 1
else:
# prevent linking with path that already in exit zone
            add = True
for p in path:
if self.check_exit(p[1]):
                    add = False
break
if add:
                new_pathes.append(path)
self.pathes = new_pathes


    context['pathes'] = self.pathes
    context['objects'] = objects
    context['vehicle_count'] = self.vehicle_count 
self.log.debug('#VEHICLES FOUND: %s' % self.vehicle_count)
return context

最后兩個處理器是CSV編寫器,用于創(chuàng)建報告CSV文件,以及用于調(diào)試和精美圖片的可視化。

class CsvWriter(PipelineProcessor):
def __init__(self, path, name, start_time=0, fps=15):
super(CsvWriter, self).__init__()
self.fp = open(os.path.join(path, name), 'w')
self.writer = csv.DictWriter(self.fp, fieldnames=['time', 'vehicles'])
self.writer.writeheader()
self.start_time = start_time
self.fps = fps
self.path = path
self.name = name
self.prev = None
def __call__(self, context):
            frame_number = context['frame_number']
            count = _count = context['vehicle_count']
if self.prev:
                _count = count - self.prev
            time = ((self.start_time + int(frame_number / self.fps)) * 100
                    + int(100.0 / self.fps) * (frame_number % self.fps))
self.writer.writerow({'time': time, 'vehicles': _count})
self.prev = count
return context
class Visualizer(PipelineProcessor):
def __init__(self, save_image=True, image_dir='images'):
super(Visualizer, self).__init__()
self.save_image = save_image
self.image_dir = image_dir
def check_exit(self, point, exit_masks=[]):
for exit_mask in exit_masks:
if exit_mask[point[1]][point[0]] == 255:
return True
return False
def draw_pathes(self, img, pathes):
if not img.any():
return
for i, path in enumerate(pathes):
                path = np.array(path)[:, 1].tolist()
for point in path:
                    cv2.circle(img, point, 2, CAR_COLOURS[0], -1)
                    cv2.polylines(img, [np.int32(path)], False, CAR_COLOURS[0], 1)
return img
def draw_boxes(self, img, pathes, exit_masks=[]):
for (i, match) in enumerate(pathes):
                contour, centroid = match[-1][:2]
if self.check_exit(centroid, exit_masks):
                    continue
                x, y, w, h = contour
                cv2.rectangle(img, (x, y), (x + w - 1, y + h - 1),
                              BOUNDING_BOX_COLOUR, 1)
                cv2.circle(img, centroid, 2, CENTROID_COLOUR, -1)
return img
def draw_ui(self, img, vehicle_count, exit_masks=[]):
# this just add green mask with opacity to the image
for exit_mask in exit_masks:
                _img = np.zeros(img.shape, img.dtype)
                _img[:, :] = EXIT_COLOR
                mask = cv2.bitwise_and(_img, _img, mask=exit_mask)
                cv2.addWeighted(mask, 1, img, 1, 0, img)
# drawing top block with counts
            cv2.rectangle(img, (0, 0), (img.shape[1], 50), (0, 0, 0), cv2.FILLED)
            cv2.putText(img, ("Vehicles passed: {total} ".format(total=vehicle_count)), (30, 30),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, (255, 255, 255), 1)
return img
def __call__(self, context):
            frame = context['frame'].copy()
            frame_number = context['frame_number']
            pathes = context['pathes']
            exit_masks = context['exit_masks']
            vehicle_count = context['vehicle_count']
            frame = self.draw_ui(frame, vehicle_count, exit_masks)
            frame = self.draw_pathes(frame, pathes)
            frame = self.draw_boxes(frame, pathes, exit_masks)
            utils.save_frame(frame, self.image_dir +
"/processed_%04d.png" % frame_number)
return context

結(jié)論

正如我們看到的那樣,它并不像許多人想象的那么難。但是,如果小伙伴運行腳本,小伙伴會發(fā)現(xiàn)此解決方案并不理想,存在前景對象存在重疊的問題,并且它也沒有按類型對車輛進(jìn)行分類。但是,當(dāng)相機有較好位置,例如位于道路正上方時,該算法具有很好的準(zhǔn)確性。

責(zé)任編輯:彭菁

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 過濾器
    +關(guān)注

    關(guān)注

    1

    文章

    433

    瀏覽量

    19760
  • 計算機視覺
    +關(guān)注

    關(guān)注

    8

    文章

    1701

    瀏覽量

    46146
  • OpenCV
    +關(guān)注

    關(guān)注

    31

    文章

    635

    瀏覽量

    41594

原文標(biāo)題:使用OpenCV實現(xiàn)道路車輛計數(shù)

文章出處:【微信號:vision263com,微信公眾號:新機器視覺】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    什么是計算機視覺?計算機視覺的三種方法

    計算機視覺是指通過為計算機賦予人類視覺這一技術(shù)目標(biāo),從而賦能裝配線檢查到駕駛輔助和機器人等應(yīng)用。計算機缺乏像人類一樣憑直覺產(chǎn)生
    的頭像 發(fā)表于 11-16 16:38 ?4793次閱讀
    什么是<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>?<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>的三種方法

    機器視覺計算機視覺的關(guān)系簡述

    ,以控制相應(yīng)的行為。因此,可以說,計算機視覺為機器視覺提供圖像和景物分析的理論及算法基礎(chǔ),機器視覺計算機
    發(fā)表于 05-13 14:57

    基于OpenCV的計算機視覺技術(shù)實現(xiàn)

    基于OpenCV的計算機視覺技術(shù)實現(xiàn)OpencV是用來實現(xiàn)計算機視覺相關(guān)技術(shù)的開放源碼工作庫,是
    發(fā)表于 11-23 21:06 ?0次下載
    基于OpenCV的<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>技術(shù)<b class='flag-5'>實現(xiàn)</b>

    基于線性CCD視覺信息的道路交通標(biāo)志識別系統(tǒng)

    基于線性CCD視覺信息的道路交通標(biāo)志識別系統(tǒng),適用于圖像識別類。
    發(fā)表于 04-28 09:49 ?6次下載

    計算機視覺與機器視覺區(qū)別

     “計算機視覺”,是指用計算機實現(xiàn)人的視覺功能,對客觀世界的三維場景的感知、識別和理解。計算機
    的頭像 發(fā)表于 12-08 09:27 ?1.3w次閱讀

    道路交通發(fā)展難點與智慧展望

    隨著生產(chǎn)經(jīng)濟的日益發(fā)展和提高,道路交通運輸系統(tǒng)也得到了質(zhì)的改善。
    發(fā)表于 07-12 10:55 ?1493次閱讀

    計算機視覺技術(shù)簡介

    由于“計算機視覺”反映了對視覺環(huán)境及其上下文的相對理解,因此,一些科學(xué)家認(rèn)為,該領(lǐng)域為人工智能領(lǐng)域鋪平了道路。那么什么是計算機
    發(fā)表于 07-11 11:24 ?4562次閱讀

    計算機視覺常用算法_計算機視覺有哪些分類

    本文主要介紹了計算機視覺常用算法及計算機視覺的分類。
    的頭像 發(fā)表于 07-30 17:34 ?1.4w次閱讀

    關(guān)于基于英特爾AI計算機視覺的邊緣計算設(shè)備

    當(dāng)前,中國正在大力推進(jìn)包括人工智能、5G和工業(yè)物聯(lián)網(wǎng)在內(nèi)的新基礎(chǔ)設(shè)施建設(shè),為智慧城市的發(fā)展注入新動能。其中,城市的智能交通是至關(guān)重要的組成部分。通過對于人工智能、計算機視覺、云計算和大
    的頭像 發(fā)表于 09-16 15:12 ?2546次閱讀
    關(guān)于基于英特爾AI<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>的邊緣<b class='flag-5'>計算</b>設(shè)備

    計算機視覺的基礎(chǔ)概念和現(xiàn)實應(yīng)用

    本文將介紹計算機視覺的基礎(chǔ)概念和現(xiàn)實應(yīng)用,對任何聽說過計算機視覺但不確定它是什么以及如何應(yīng)用的人,本文是了解計算機
    的頭像 發(fā)表于 11-08 10:10 ?1638次閱讀

    使用計算機視覺進(jìn)行電梯乘客計數(shù)

    電子發(fā)燒友網(wǎng)站提供《使用計算機視覺進(jìn)行電梯乘客計數(shù).zip》資料免費下載
    發(fā)表于 06-12 15:35 ?0次下載
    使用<b class='flag-5'>計算機</b><b class='flag-5'>視覺</b>進(jìn)行電梯乘客<b class='flag-5'>計數(shù)</b>

    機器視覺計算機視覺的區(qū)別

    機器視覺計算機視覺的區(qū)別 機器視覺計算機視覺是兩個相關(guān)但不同的概念。雖然許多人使用這兩個術(shù)語
    的頭像 發(fā)表于 08-09 16:51 ?2123次閱讀

    計算機視覺屬于人工智能嗎

    和解釋視覺信息,從而實現(xiàn)對圖像和視頻的自動分析和處理。 計算機視覺的基本概念 2.1 計算機視覺
    的頭像 發(fā)表于 07-09 09:11 ?1445次閱讀

    計算機視覺和機器視覺區(qū)別在哪

    ,旨在實現(xiàn)對圖像和視頻的自動分析和理解。 機器視覺 機器視覺計算機視覺的一個分支,主要應(yīng)用于工業(yè)自動化領(lǐng)域。它利用
    的頭像 發(fā)表于 07-09 09:22 ?536次閱讀

    計算機視覺的五大技術(shù)

    計算機視覺作為深度學(xué)習(xí)領(lǐng)域最熱門的研究方向之一,其技術(shù)涵蓋了多個方面,為人工智能的發(fā)展開拓了廣闊的道路。以下是對計算機視覺五大技術(shù)的詳細(xì)解析
    的頭像 發(fā)表于 07-10 18:26 ?1613次閱讀