欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

基于熱敏電阻的溫度檢測系統(tǒng)—第1部分:設(shè)計(jì)挑戰(zhàn)和電路配置

星星科技指導(dǎo)員 ? 來源:ADI ? 作者:Jellenie Rodriguez 和 ? 2023-06-13 14:35 ? 次閱讀

Jellenie RodriguezMary McCarthy

本系列文章分為兩部分,這是第1部分。本部分首先討論基于熱敏電阻的溫度測量系統(tǒng)的歷史和設(shè)計(jì)挑戰(zhàn),以及它與基于電阻溫度檢測器(RTD)的溫度測量系統(tǒng)的比較。此外,本文還會簡要介紹熱敏電阻選擇、配置權(quán)衡,以及Σ-Δ型模數(shù)轉(zhuǎn)換器(ADC)在該應(yīng)用領(lǐng)域中的重要作用。第2部分將詳細(xì)介紹如何優(yōu)化和評估基于熱敏電阻的最終測量系統(tǒng)。

熱敏電阻與RTD

正如文章 "如何選擇并設(shè)計(jì)理想RTD溫度檢測系統(tǒng)" 中所討論的,RTD是一種電阻值隨溫度變化的電阻器。熱敏電阻的工作方式與RTD類似。RTD僅有正溫度系數(shù),熱敏電阻則不同,既可以有正溫度系數(shù),也可以有負(fù)溫度系數(shù)。負(fù)溫度系數(shù)(NTC)熱敏電阻的阻值會隨著溫度升高而減小,而正溫度系數(shù)(PTC)熱敏電阻的阻值會隨著溫度升高而增大。圖1顯示了典型NTC和PTC熱敏電阻的響應(yīng)特性,以及它們與RTD曲線的比較。

wKgZomSIFHuAazihAABDwjLngxw357.png

圖 1. 熱敏電阻與 RTD 的響應(yīng)特性比較

在溫度范圍方面,RTD曲線接近線性,而熱敏電阻具有非線性(指數(shù))特性,因此前者覆蓋的溫度范圍(通常為–200°C至+850°C)比后者要寬得多。RTD通常提供眾所周知的標(biāo)準(zhǔn)化曲線,而熱敏電阻曲線則因制造商而異。我們將在本文的"熱敏電阻選擇指南"部分詳細(xì)討論這一點(diǎn)。

熱敏電阻由復(fù)合材料——通常是陶瓷、聚合物或半導(dǎo)體(通常是金屬氧化物)——制成,與由純金屬(鉑、鎳或銅)制成的RTD相比,前者要小得多且更便宜,但不如后者堅(jiān)固。熱敏電阻能夠比RTD更快地檢測溫度變化,從而提供更快的反饋。因此,熱敏電阻傳感器常用于要求低成本、小尺寸、更快響應(yīng)速度、更高靈敏度且溫度范圍受限的應(yīng)用,例如監(jiān)控電子設(shè)備、家庭和樓宇控制、科學(xué)實(shí)驗(yàn)室,或商業(yè)或工業(yè)應(yīng)用中的熱電偶所使用的冷端補(bǔ)償。

在大多數(shù)情況下,精密溫度測量應(yīng)用使用NTC熱敏電阻,而非PTC熱敏電阻。有一些PTC熱敏電阻被用于過流輸入保護(hù)電路,或用作安全應(yīng)用的可復(fù)位保險(xiǎn)絲。PTC熱敏電阻的電阻-溫度曲線在達(dá)到其切換點(diǎn)(或居里點(diǎn))之前有一個非常小的NTC區(qū)域;超過切換點(diǎn)之后,在幾攝氏度的范圍內(nèi),其電阻會急劇增加幾個數(shù)量級。因此,在過流情況下,PTC熱敏電阻在超過切換溫度后會產(chǎn)生大量自發(fā)熱,其電阻會急劇增加,導(dǎo)致輸入系統(tǒng)的電流減少,從而防止系統(tǒng)發(fā)生損壞。PTC熱敏電阻的切換點(diǎn)通常在60°C和120°C之間,因此它不適合用在寬溫度范圍應(yīng)用中監(jiān)控溫度測量結(jié)果。本文重點(diǎn)介紹能夠測量或監(jiān)控–80°C至+150°C溫度范圍的NTC熱敏電阻。NTC熱敏電阻在25°C時的標(biāo)稱電阻從幾歐姆到10 MΩ不等。如圖1所示,與RTD相比,熱敏電阻每攝氏度的電阻變化更為顯著。熱敏電阻的高靈敏度和高電阻值使得其前端電路比RTD要簡單得多,因?yàn)闊崦綦娮璨恍枰魏翁厥獾慕泳€配置(例如3線或4線)來補(bǔ)償引線電阻。熱敏電阻設(shè)計(jì)僅使用簡單的2線配置。

表1顯示了RTD、NTC和PTC熱敏電阻的優(yōu)缺點(diǎn)。

參數(shù) NTC熱敏電阻 PTC熱敏電阻 RTDs
溫度范圍 –80°C 至 +300°C 60°C 至 120°C –200°C 至 +850°C
溫度系數(shù) 負(fù)
線性度 指數(shù)式 指數(shù)式 接近線性
靈敏度
響應(yīng)時間 快速 快速 慢速
激勵 必需 必需 必需
自發(fā)熱
接線配置 2線 2線 2線、3線、4線
成本 便宜到中等 便宜 中等到昂貴
尺寸

基于熱敏電阻的溫度測量挑戰(zhàn)

高精度的熱敏電阻溫度測量需要精密信號調(diào)理、模數(shù)轉(zhuǎn)換、線性化和補(bǔ)償,如圖2所示。盡管信號鏈看起來簡單明了,但其中涉及的幾個復(fù)雜因素也會影響整個系統(tǒng)的電路板尺寸、成本和性能。ADI精密ADC產(chǎn)品組合中有幾種集成解決方案,例如 AD7124-4/AD7124-8,它們能為溫度系統(tǒng)設(shè)計(jì)帶來多方面好處,應(yīng)用所需的大部分構(gòu)建模塊都已內(nèi)置。但是,設(shè)計(jì)和優(yōu)化基于熱敏電阻的溫度測量解決方案涉及到多種挑戰(zhàn)。

wKgaomSIFIOAXtpUAAA8RJOH_SE295.png

圖 2. 典型 NTC 熱敏電阻測量信號鏈模塊

挑戰(zhàn)包括:

市場上有各種各樣的熱敏電阻。

如何為具體應(yīng)用選擇合適的熱敏電阻?

與RTD一樣,熱敏電阻是無源器件,自身不會產(chǎn)生電氣輸出。使用激勵電流或電壓來測量傳感器的電阻,即讓一個小電流經(jīng)過傳感器以產(chǎn)生電壓。

如何選擇電流/電壓?

熱敏電阻信號應(yīng)如何調(diào)理?

如何調(diào)整上述變量,以便在規(guī)格范圍內(nèi)使用轉(zhuǎn)換器或其他構(gòu)建模塊?

在一個系統(tǒng)中連接多個熱敏電阻:傳感器如何連接?不同傳感器之間是否能共享一些模塊?對系統(tǒng)整體性能有何影響?

熱敏電阻的一個主要問題是其非線性響應(yīng)和系統(tǒng)精度。

設(shè)計(jì)的預(yù)期誤差是多少?

使用哪些線性化和補(bǔ)償技術(shù)來實(shí)現(xiàn)目標(biāo)性能?

本文將討論所有這些挑戰(zhàn),并就如何解決這些問題和進(jìn)一步簡化此類系統(tǒng)的設(shè)計(jì)過程提供建議。

熱敏電阻選擇指南

當(dāng)今市場上有很多NTC熱敏電阻可供選擇,為具體應(yīng)用選擇特定的熱敏電阻可能相當(dāng)具有挑戰(zhàn)性。請注意,熱敏電阻按其標(biāo)稱值列出,即25°C時的標(biāo)稱電阻。因此,10 kΩ熱敏電阻在25°C時的標(biāo)稱電阻為10 kΩ。熱敏電阻的標(biāo)稱或基本電阻值從幾歐姆到10 MΩ不等。標(biāo)稱電阻較低(10 kΩ或更低)的熱敏電阻,支持的溫度范圍通常也較低,例如–50°C至+70°C。標(biāo)稱電阻較高的熱敏電阻,可支持最高300°C的溫度。

熱敏電阻元件由金屬氧化物制成。熱敏電阻有珠狀、徑向和SMD等形式。珠狀熱敏電阻采用環(huán)氧樹脂涂層或玻璃封裝,以提供額外保護(hù)。環(huán)氧樹脂涂層珠狀熱敏電阻、徑向和SMD熱敏電阻適用于最高150°C的溫度。玻璃涂層珠狀熱敏電阻適用于高溫測量。所有類型熱敏電阻的涂層/封裝還能防止腐蝕。一些熱敏電阻還具有額外的外殼,以在惡劣環(huán)境中提供進(jìn)一步的保護(hù)。與徑向/SMD熱敏電阻相比,珠狀熱敏電阻具有更快的響應(yīng)時間。然而,后者不如前者那么穩(wěn)健。因此,使用何種熱敏電阻取決于最終應(yīng)用和熱敏電阻所處的環(huán)境。熱敏電阻的長期穩(wěn)定性取決于制造材料及其封裝和結(jié)構(gòu)。例如,環(huán)氧樹脂涂層的NTC熱敏電阻每年可能變化0.2°C,而密封的熱敏電阻每年僅變化0.02°C。

不同熱敏電阻有不同的精度。標(biāo)準(zhǔn)熱敏電阻的精度通常為0.5°C至1.5°C。熱敏電阻的標(biāo)稱電阻值和β值(25°C至50°C/85°C關(guān)系)有一個容差。請注意,熱敏電阻的β值取決于制造商。例如,不同制造商生產(chǎn)的10 kΩ NTC熱敏電阻會有不同的β值。對于較高精度的系統(tǒng),可以使用Omega? 44xxx系列等熱敏電阻。在0°C至70°C的溫度范圍內(nèi),其精度為0.1°C或0.2°C。因此,所測量的溫度范圍以及該溫度范圍內(nèi)所需的精度決定了一個熱敏電阻是否適合特定應(yīng)用。請注意,Omega 44xxx系列的精度越高,其成本也越高。

因此,使用何種熱敏電阻取決于:

被測溫度范圍

精度要求

使用熱敏電阻的環(huán)境

長期穩(wěn)定性

線性化:β與Steinhart-Hart方程

為了將電阻轉(zhuǎn)換為攝氏度,通常使用β值。知道兩個溫度點(diǎn)以及每個溫度點(diǎn)對應(yīng)的電阻,便可確定β值。

wKgaomSIFKuAQKpXAAAUtiTUEmI321.png

其中:

RT1 = 溫度1時的電阻

RT2 = 溫度2時的電阻

T1 = 溫度1 (K)

T2 = 溫度2 (K)

熱敏電阻的數(shù)據(jù)手冊通常會列出兩種情況的β值:

兩個溫度分別為25°C和50°C

兩個溫度分別為25°C和85°C

用戶使用接近設(shè)計(jì)所用溫度范圍的β值。大多數(shù)熱敏電阻數(shù)據(jù)手冊在列出β值的同時,還會列出25°C時的電阻容差和β值的容差。

較高精度的熱敏電阻(如Omega 44xxx系列)和較高精度的最終解決方案使用Steinhart-Hart方程將電阻轉(zhuǎn)換為攝氏度。公式2需要三個常數(shù)A、B和C,這些常數(shù)同樣由傳感器制造商提供。公式的系數(shù)是利用三個溫度點(diǎn)生成的,因此所得公式盡可能減少了線性化引入的誤差(線性化引起的誤差通常為0.02°C)。

wKgZomSIFLKASgIfAAAQLNJA7ys936.png

其中:

A、B、C是從三個溫度測試點(diǎn)得出的常數(shù)。

R = 熱敏電阻的阻值,單位為Ω

T = 溫度,單位為K

電流?電壓激勵

圖3顯示了傳感器的電流激勵。將激勵電流作用于熱敏電阻,并將相同電流作用于精密電阻;精密電阻用作測量的參考。參考電阻的值必須大于或等于熱敏電阻的最高電阻值(取決于系統(tǒng)中測量的最低溫度)。選擇激勵電流的大小時,同樣要考慮熱敏電阻的最大電阻值,以確保傳感器和參考電阻兩端產(chǎn)生的電壓始終處于電子設(shè)備可接受的水平。激勵電流源需要一定的裕量或輸出順從性。如果熱敏電阻在所測量的最低溫度時具有較大電阻,則激勵電流值將非常低。因此,高溫下熱敏電阻兩端產(chǎn)生的電壓很小。為了優(yōu)化這些低電平信號的測量,可以使用可編程增益級。然而,增益需要動態(tài)編程,因?yàn)閬碜詿崦綦娮璧男盘栯娖綍S溫度發(fā)生顯著變化。

wKgaomSIFLiAODJWAAAk48LL4nw923.png

圖 3. 熱敏電阻的電流激勵

另一個方案是設(shè)置增益但使用動態(tài)激勵電流。當(dāng)來自熱敏電阻的信號電平發(fā)生變化時,激勵電流值也會動態(tài)變化,使得熱敏電阻兩端產(chǎn)生的電壓處于電子設(shè)備的額定輸入范圍內(nèi)。用戶必須確保參考電阻兩端產(chǎn)生的電壓也處于電子設(shè)備可接受的水平。這兩種方案都需要高水平的控制,持續(xù)監(jiān)測熱敏電阻兩端的電壓,以確保信號能被電子設(shè)備測量。有沒有更簡單的方案?我們來看看電壓激勵。

wKgZomSIFL6AJqX7AAAeTBj-mzo004.png

圖 4. 熱敏電阻的電壓激勵

當(dāng)熱敏電阻由恒定電壓激勵時,通過熱敏電阻的電流將隨著熱敏電阻阻值的變化而自動縮放?,F(xiàn)在使用精密檢測電阻,而不使用參考電阻,其目的是計(jì)算流過熱敏電阻的電流,這樣就能計(jì)算出熱敏電阻的阻值。由于激勵電壓也用作ADC基準(zhǔn)電壓,因此無需增益級。處理器無需監(jiān)控?zé)崦綦娮鑳啥说碾妷?,無需確定該信號電平能否被電子設(shè)備測量,也無需計(jì)算要將增益/激勵電流調(diào)整到什么值。這是本文中使用的方法。

熱敏電阻阻值范圍?激勵

如果熱敏電阻的標(biāo)稱電阻和阻值范圍較小,那么電壓或電流激勵均可使用。在這種情況下,激勵電流和增益可以是固定值。電路將如圖3所示。這種方法很有用,因?yàn)榱鬟^傳感器和參考電阻的電流是可控的,這在低功耗應(yīng)用中很有價(jià)值。此外,熱敏電阻的自發(fā)熱也極小。

對標(biāo)稱電阻較低的熱敏電阻也可以使用電壓激勵。但是,用戶必須確保通過傳感器的電流對于傳感器本身或應(yīng)用而言任何時候都不能太大。

當(dāng)使用標(biāo)稱電阻和溫度范圍均較大的熱敏電阻時,電壓激勵會使系統(tǒng)更容易實(shí)現(xiàn)。較大標(biāo)稱電阻確保標(biāo)稱電流處于合理水平。但是,設(shè)計(jì)人員需要確保電流在應(yīng)用支持的整個溫度范圍內(nèi)處于可接受的水平。

Σ-Δ ADC在基于熱敏電阻的應(yīng)用中的重要作用

當(dāng)設(shè)計(jì)熱敏電阻測量系統(tǒng)時,Σ-Δ ADC能提供多方面優(yōu)勢。首先,Σ-Δ型ADC能夠?qū)?a href="http://www.delux-kingway.cn/analog/" target="_blank">模擬輸入過采樣,從而盡可能地減少外部濾波,只需要簡單的RC濾波器。另外,它們支持靈活地選擇濾波器類型和輸出數(shù)據(jù)速率。在采用市電供電的設(shè)計(jì)中,內(nèi)置數(shù)字濾波可用來抑制交流電源的干擾。AD7124-4/AD7124-8等24位器件的峰峰值分辨率21.7位(最大值),因此它們能提供高分辨率。

其他優(yōu)點(diǎn)包括:

寬共模范圍的模擬輸入

寬共模范圍的基準(zhǔn)輸入

能夠支持比率式配置

有些Σ-Δ型ADC集成了很多功能,包括:

PGA

內(nèi)部基準(zhǔn)電壓源

基準(zhǔn)電壓源/模擬輸入緩沖器

校準(zhǔn)功能

使用Σ-Δ ADC可大幅簡化熱敏電阻設(shè)計(jì),減少BOM,降低系統(tǒng)成本,縮小電路板空間,并縮短產(chǎn)品上市時間。

本文將AD7124-4/AD7124-8用作ADC,它們是集成PGA、嵌入式基準(zhǔn)電壓源、模擬輸入和基準(zhǔn)電壓緩沖器的低噪聲、低電流精密ADC。

熱敏電阻電路配置——比率式配置

無論使用激勵電流還是激勵電壓,都建議使用比率式配置,其中基準(zhǔn)電壓和傳感器電壓是從同一激勵源獲得。這意味著激勵源的任何變化都不會影響測量的精度。

圖5顯示,恒定激勵電流為熱敏電阻和精密電阻RREF供電,RREF上產(chǎn)生的電壓就是熱敏電阻測量的基準(zhǔn)電壓。激勵電流不需要非常準(zhǔn)確,穩(wěn)定性不需要太高,因?yàn)樵诖伺渲弥?,激勵電流的任何誤差都會被抵消。激勵電流通常比電壓激勵更受歡迎,原因是它能出色地控制靈敏度,而且當(dāng)傳感器位于遠(yuǎn)程地點(diǎn)時,它具有更好的抗擾度。這種類型的偏置技術(shù)常用于電阻值較低的RTD或熱敏電阻。但是,對于電阻值較大且靈敏度較高的熱敏電阻,溫度變化所產(chǎn)生的信號電平會較大,因此應(yīng)使用電壓激勵。例如,一個10 kΩ熱敏電阻在25°C時的阻值為10 kΩ,而在?50°C時,NTC熱敏電阻的阻值為441.117 kΩ。AD7124-4/AD7124-8提供的50 μA最小激勵電流可產(chǎn)生的電壓為441.117 kΩ × 50 μA = 22 V,此電壓過高,超出了該應(yīng)用領(lǐng)域中使用的大多數(shù)ADC的工作范圍。熱敏電阻通常還連接到電子設(shè)備或位于電子設(shè)備附近,因此不需要激勵電流的抗噪優(yōu)勢。

wKgaomSIFMaAFyXJAAAkIVHwKXo701.png

圖 5. 恒流源配置

圖6顯示了用于在NTC熱敏電阻兩端產(chǎn)生電壓的恒定激勵電壓。以分壓器電路的形式添加一個串聯(lián)檢測電阻,會限制熱敏電阻在最小電阻值時流經(jīng)其中的電流。在此配置中,在25°C的基本溫度時,檢測電阻RSENSE的值必須等于熱敏電阻的電阻值,以便將它處于25°C標(biāo)稱溫度時的輸出電壓設(shè)置為基準(zhǔn)電壓的中間值。同樣,如果使用25°C時阻值為10 kΩ的10 kΩ熱敏電阻,則RSENSE必須等于10 kΩ。當(dāng)溫度改變時,NTC熱敏電阻的阻值也會改變,熱敏電阻兩端的激勵電壓的一小部分也發(fā)生改變,從而產(chǎn)生與成NTC熱敏電阻阻值比例的輸出電壓。

wKgaomSIFM2AbUqjAAAeu4YmzZ8610.png

圖 6. 分壓電路配置

如果選擇用來為熱敏電阻和/或RSENSE供電的基準(zhǔn)電壓與用于測量的ADC基準(zhǔn)電壓相同,則系統(tǒng)就是比率式測量配置(圖7),任何與激勵電壓源相關(guān)的誤差都會被消除。

wKgZomSIFNOAVaWYAABDidD32zM815.png

圖 7. 熱敏電阻比率式配置測量

請注意,檢測電阻(電壓激勵)或參考電阻(電流激勵)的初始容差和漂移必須很低,因?yàn)檫@兩個變量均會影響系統(tǒng)總體精度。

當(dāng)使用多個熱敏電阻時,可以使用單個激勵電壓。但是,每個熱敏電阻必須有自己的精密檢測電阻,如圖8所示。另一個方案是使用低導(dǎo)通電阻的外部多路復(fù)用器或開關(guān),從而支持共享單個精密檢測電阻。采用這種配置時,每個熱敏電阻在測量時都需要一定的建立時間。

wKgaomSIFNqAGHKDAAB1H4xHyWs290.png

圖 8. 多個熱敏電阻的模擬輸入配置測量

總之,設(shè)計(jì)基于熱敏電阻的溫度系統(tǒng)時需要關(guān)注多個方面:傳感器選擇,傳感器連接,元器件選擇的權(quán)衡,ADC配置,以及這些不同變量如何影響系統(tǒng)整體精度。本系列的下一篇文章將解釋如何優(yōu)化系統(tǒng)設(shè)計(jì)和整體系統(tǒng)誤差預(yù)算以實(shí)現(xiàn)目標(biāo)性能。

審核編輯:郭婷

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴
  • 熱敏電阻
    +關(guān)注

    關(guān)注

    14

    文章

    1178

    瀏覽量

    101755
  • 轉(zhuǎn)換
    +關(guān)注

    關(guān)注

    0

    文章

    102

    瀏覽量

    29820
  • 測量系統(tǒng)
    +關(guān)注

    關(guān)注

    2

    文章

    542

    瀏覽量

    41558
收藏 人收藏

    評論

    相關(guān)推薦

    基于熱敏電阻溫度測量系統(tǒng)設(shè)計(jì)

    NTC熱敏電阻是一種傳感器電阻,其電阻值隨著溫度的變化而改變。我們經(jīng)??梢栽跍y溫電路中看到他們的身影。本文將介紹NTC
    發(fā)表于 09-08 10:08 ?2002次閱讀

    熱敏電阻如何影響系統(tǒng)整體精度

    本文首先討論基于熱敏電阻溫度測量系統(tǒng)的歷史和設(shè)計(jì)挑戰(zhàn),以及它與基于電阻溫度
    的頭像 發(fā)表于 10-20 10:33 ?2474次閱讀

    什么是熱敏電阻 熱敏電阻的參數(shù)

    thermistor)。正溫度系數(shù)熱敏電阻器的電阻值隨溫度的升高而增大,負(fù)溫度系數(shù)熱敏電阻器的
    的頭像 發(fā)表于 08-28 17:26 ?3227次閱讀
    什么是<b class='flag-5'>熱敏電阻</b> <b class='flag-5'>熱敏電阻</b>的參數(shù)

    NTC熱敏電阻溫度測量技術(shù)及線性電路

    NTC熱敏電阻溫度測量技術(shù)及線性電路文章從NTC熱敏電阻的性能參數(shù)出發(fā),對NTC熱敏電阻溫度
    發(fā)表于 12-16 10:38

    熱敏電阻溫度補(bǔ)償電路

    熱敏電阻溫度補(bǔ)償電路
    發(fā)表于 01-31 12:07 ?6737次閱讀
    <b class='flag-5'>熱敏電阻</b><b class='flag-5'>溫度</b>補(bǔ)償<b class='flag-5'>電路</b>

    基于熱敏電阻溫度檢測系統(tǒng)的優(yōu)化與評估

    正如本系列文章《基于熱敏電阻溫度測量系統(tǒng)的設(shè)計(jì)挑戰(zhàn)和電路配置》所討論的,設(shè)計(jì)和優(yōu)化基于
    的頭像 發(fā)表于 10-24 11:37 ?1164次閱讀

    基于熱敏電阻溫度檢測系統(tǒng)的優(yōu)化和評估

    如本系列文章1部分所述,設(shè)計(jì)和優(yōu)化基于熱敏電阻的應(yīng)用解決方案存在不同的挑戰(zhàn)。這些是傳感器選擇和電路
    的頭像 發(fā)表于 12-13 11:30 ?907次閱讀
    基于<b class='flag-5'>熱敏電阻</b>的<b class='flag-5'>溫度</b><b class='flag-5'>檢測</b><b class='flag-5'>系統(tǒng)</b>的優(yōu)化和評估

    基于熱敏電阻溫度檢測系統(tǒng)設(shè)計(jì)挑戰(zhàn)和電路配置

    如文章“如何選擇和設(shè)計(jì)最佳RTD溫度檢測系統(tǒng)”中所述,RTD是一種電阻器,其電阻溫度的變化而變
    的頭像 發(fā)表于 12-13 11:52 ?1446次閱讀

    基于熱敏電阻溫度檢測系統(tǒng)2部分系統(tǒng)優(yōu)化與評估

    溫度測量演示示例來生成自定義代碼,它支持選擇控制器板、軟件平臺、器件配置和測量傳感器(如熱敏電阻)。這個開源Mbed平臺支持150多種經(jīng)過修改或未經(jīng)修改的控制器板。因此,它支持快速原型設(shè)計(jì),開發(fā)工作將更加快捷。
    的頭像 發(fā)表于 06-13 14:38 ?614次閱讀
    基于<b class='flag-5'>熱敏電阻</b>的<b class='flag-5'>溫度</b><b class='flag-5'>檢測</b><b class='flag-5'>系統(tǒng)</b>—<b class='flag-5'>第</b>2<b class='flag-5'>部分</b>:<b class='flag-5'>系統(tǒng)</b>優(yōu)化與評估

    基于熱敏電阻溫度檢測系統(tǒng)1部分:設(shè)計(jì)挑戰(zhàn)和電路配置

    總之,設(shè)計(jì)基于熱敏電阻溫度系統(tǒng)時需要關(guān)注多個方面:傳感器選擇,傳感器連接,元器件選擇的權(quán)衡,ADC配置,以及這些不同變量如何影響系統(tǒng)整體精
    的頭像 發(fā)表于 06-14 14:15 ?711次閱讀
    基于<b class='flag-5'>熱敏電阻</b>的<b class='flag-5'>溫度</b><b class='flag-5'>檢測</b><b class='flag-5'>系統(tǒng)</b>—<b class='flag-5'>第</b><b class='flag-5'>1</b><b class='flag-5'>部分</b>:設(shè)計(jì)<b class='flag-5'>挑戰(zhàn)和</b><b class='flag-5'>電路</b><b class='flag-5'>配置</b>

    熱敏電阻浪涌電流測試

    可以限制浪涌電流,來保護(hù)各種設(shè)備免受浪涌電流的影響。熱敏電阻浪涌電流測試標(biāo)準(zhǔn)直熱式階躍型正溫度系數(shù)熱敏電阻1
    的頭像 發(fā)表于 07-07 15:46 ?988次閱讀
    <b class='flag-5'>熱敏電阻</b>浪涌電流測試

    溫度系數(shù)熱敏電阻與負(fù)溫度系數(shù)熱敏電阻的區(qū)別

    在電子元件的廣闊領(lǐng)域中,熱敏電阻作為一類對溫度敏感的電阻器,其在溫度檢測、控制以及電路保護(hù)等方面
    的頭像 發(fā)表于 05-22 16:31 ?2314次閱讀

    熱敏電阻溫度檢測

    電子發(fā)燒友網(wǎng)站提供《熱敏電阻溫度檢測.pdf》資料免費(fèi)下載
    發(fā)表于 09-07 10:36 ?6次下載
    <b class='flag-5'>熱敏電阻</b><b class='flag-5'>溫度</b><b class='flag-5'>檢測</b>

    NTC熱敏電阻特性與應(yīng)用 NTC熱敏電阻與PTC的區(qū)別

    NTC熱敏電阻特性與應(yīng)用 1. NTC熱敏電阻的定義和特性 NTC熱敏電阻是一種負(fù)溫度系數(shù)的熱敏電阻
    的頭像 發(fā)表于 11-26 16:14 ?1461次閱讀

    NTC熱敏電阻溫度補(bǔ)償功能

    Coefficient)是一種具有負(fù)溫度系數(shù)的熱敏電阻器,其電阻值隨著溫度的升高而降低,反之則升高。這種特性使得NTC熱敏電阻
    的頭像 發(fā)表于 11-26 17:42 ?1253次閱讀