作為目前碳化硅MOSFET型號最豐富的國產(chǎn)廠商派恩杰,不僅在功率器件性能上達(dá)到國際一流廠商水平,在AC BTI可靠性上更是超越國際一流廠商??偛命S興博士用高性能和高可靠性的產(chǎn)品證明派恩杰是國產(chǎn)碳化硅功率器件的佼佼者,展現(xiàn)了超高的碳化硅設(shè)計(jì)能力和工藝水平。
背景
在功率器件半導(dǎo)體領(lǐng)域,越來越需要高頻高功率耐高溫的功率器件,隨著時(shí)間發(fā)展,硅材料在功率器件領(lǐng)域已經(jīng)達(dá)到了材料性能的極限,碳化硅憑借其材料的優(yōu)越特性開始大放異彩,然而新材料帶來的可靠性問題是急需解決的。其中AC BTI(Bias Temperature Instabilities)即交流高溫偏置不穩(wěn)定性是碳化硅新材料帶來的一大問題。
碳化硅的生產(chǎn)制造具有很多挑戰(zhàn),比如碳化硅晶圓表面更粗糙,直徑更小,硬度接近金剛石,透明度更高;比如需要開發(fā)新的制造工藝,高溫?fù)诫s激活退火、歐姆接觸形成和新的界面鈍化方案等。為了成功認(rèn)證汽車級或工業(yè)級可靠性標(biāo)準(zhǔn),必須了解和評估與傳統(tǒng)硅技術(shù)不同的SiC MOSFET的新特性,并且解決此類可靠性問題。SiC 特有的挑戰(zhàn)在某種程度上與柵極氧化物可靠性有關(guān),(1)早期柵極氧化物擊穿;(2)閾值電壓不穩(wěn)定性。
第一個(gè)可靠性問題可通過智能篩選、TDDB(Time-Dependent Dielectric Breakdown)試驗(yàn)和馬拉松試驗(yàn),智能篩選措施可以將SiC MOSFET降低至與Si MOSFET相同等級的低故障率,此前已通過《TDDB試驗(yàn)》證明派恩杰SiC MOSFET壽命遠(yuǎn)超20年,通過《馬拉松試驗(yàn)》證明在正常運(yùn)行20年的時(shí)間內(nèi)派恩杰SiC MOSFET失效PPM為個(gè)位數(shù)。
第二個(gè)可靠性問題,閾值電壓不穩(wěn)定性,分為PBTI、NBTI和AC BTI。直流的閾值電壓不穩(wěn)定性即PBTI和NBTI使用傳統(tǒng)的可靠性測試方法HTGB(High Temperature Gate Bias)即可測試,經(jīng)過驗(yàn)證派恩杰SiC MOSFET的PBTI和NBTI可靠性達(dá)到國際一流廠商水平。而AC BTI由于業(yè)界尚未有明確的測試方法,是一項(xiàng)較為前沿的研究。本文講述AC BTI測試下的閾值電壓不穩(wěn)定性問題。
如今SiC MOSFET已經(jīng)大量在電動(dòng)汽車和光伏等領(lǐng)域使用,說明目前的SiC MOSFET可靠性已遠(yuǎn)超十年前的水平,達(dá)到了車規(guī)級和工業(yè)級的可靠性水平。
物理機(jī)理
閾值電壓不穩(wěn)定性分為非本征閾值電壓不穩(wěn)定性和本征閾值電壓不穩(wěn)定性,通常與宏觀缺陷或雜質(zhì)無關(guān)。
非本征閾值電壓不穩(wěn)定性是由于離子污染物(例如鈉或鉀)可能在器件制造期間或在正常器件操作期間從外部進(jìn)入柵極氧化物。防止移動(dòng)離子進(jìn)入柵氧化層或在器件加工過程中清除它們的程序?qū)τ赟i MOSFET技術(shù)已經(jīng)非常成熟。檢測和消除的專有技術(shù)和經(jīng)驗(yàn)可以直接應(yīng)用于SiC MOSFET。
另一方面,本征閾值電壓不穩(wěn)定性與界面的物理性質(zhì)有關(guān),即界面態(tài)和邊界陷阱的密度以及它們與半導(dǎo)體襯底交換電荷載流子的能力。盡管SiC是唯一擁有高質(zhì)量原生氧化物的寬帶隙半導(dǎo)體,但SiC/SiO2界面的缺陷密度比Si/SiO2界面高兩個(gè)數(shù)量級左右。
這不僅是由于更寬的帶隙和更窄的帶隙對電介質(zhì)的偏移,而且還因?yàn)榭瘴缓吞枷嚓P(guān)的點(diǎn)缺陷僅存在于SiC。為了鈍化這些新的缺陷類型,必須開發(fā)替代的氧化后鈍化方案。不同的界面特性會導(dǎo)致SiC MOSFET的傳輸特性出現(xiàn)新的特征。大多數(shù)這些新特性都可以通過簡化的物理模型來理解,這樣可以更好地理解過程相關(guān)性,并有助于正確設(shè)置和評估壽命測試的結(jié)果。
試驗(yàn)方法
AC BTI測試方法,功率器件DUT Vgs=-5/20V,?=10k~1MHz,DS短接,DUT加熱至175℃,見圖1。
圖1. 測試原理
電路采用多顆隔離驅(qū)動(dòng)IC驅(qū)動(dòng)多顆功率器件,需要合理Layout驅(qū)動(dòng)電路,采用較短的連接線等,避免由于尖峰對器件帶來的影響。在考慮以上因素后,驅(qū)動(dòng)電阻設(shè)置稍大電阻值保證Vgs波形的尖峰較小,Vgs實(shí)測波形見圖2。
圖2. Vgs波形
試驗(yàn)方法采用MSM (Measure-Stree-Measure) 測試方法,見圖3。其中Vstress time=1~200ks。
圖3. MSM測試方法
由于碳化硅與二氧化硅界面缺陷密度更高,碳化硅MOSFET的Vth存在更大的瞬態(tài)漂移值,經(jīng)過大量的實(shí)驗(yàn)驗(yàn)證Vth瞬態(tài)漂移值不會對電路造成太大的影響,因此需要準(zhǔn)確測量到Vth的永久漂移值。
使用JEDEC標(biāo)準(zhǔn)JEP184中的Vth滯后方法測試,見圖4。其中Vgs=20V,-Vgs=-20V,t_precon=100ms,t_float=10ms,t_meas=2.5ms。Vth值以Vth_Down為準(zhǔn),因?yàn)椴捎昧祟A(yù)施加壓力后,Vth的瞬態(tài)漂移值已消除。采用此方法進(jìn)行測試,實(shí)現(xiàn)了可重復(fù)快速準(zhǔn)確測試Vth值,與初始值比較可得到Vth的永久漂移值。
圖4. 滯后Vth測量方法
試驗(yàn)結(jié)果
試驗(yàn)條件:Vgs=-5/20V,DS Short,?=100kHz,占空比δ=50%,T=175℃;器件1#~4#為派恩杰公司1200V80mΩ SiC MOSFET-P3M12080K3,器件5#為C公司同規(guī)格等級平面柵SiC MOSFET,器件6#為I公司同規(guī)格等級溝槽柵SiC MOSFET。試驗(yàn)結(jié)果Vth永久漂移值對比圖見圖5, Rdson變化率對比圖見圖6,實(shí)線圓點(diǎn)表示1000h數(shù)據(jù),虛線表示外推至20年變化值。
圖5. AC BTI VTH永久漂移值對比
1000h的AC BTI試驗(yàn)Vth永久漂移值結(jié)果:派恩杰器件1#~4#的Vth永久漂移值均小于0.1V,C公司器件5#的Vth永久漂移值為0.1~0.3V,I公司器件6#的Vth永久漂移值為0.2~1.6V。可以看出派恩杰器件Vth永久漂移值均較小且一致性較好,優(yōu)于平面柵的C公司器件。溝槽柵的I公司器件Vth永久漂移值最大,得出結(jié)論溝槽柵的SiC MOSFET功率器件Vth永久漂移值大于平面柵的SiC MOSFET。
派恩杰器件Vth永久漂移值幾乎不隨開關(guān)次數(shù)變大,沒有明顯的增長,C公司器件與I公司器件Vth永久漂移值隨開關(guān)次數(shù)符合冪律關(guān)系。C公司器件Vth永久漂移值外推至20年可能會達(dá)到0.6V左右。I公司器件Vth永久漂移值外推至20年可能會達(dá)到4V左右。
圖6. AC BTI Rdson變化率對比
1000h的AC BTI試驗(yàn)Rdson變化率結(jié)果:派恩杰器件1#~4#的Rdson變化率均小于1%,C公司器件的Rdson變化率為0.7%~4.6%,I公司器件的Rdson變化率為2.6%~40%。可以看出派恩杰器件1#~4#的Rdson變化率均較小,且不隨時(shí)間推移變化,性能穩(wěn)定,幾乎達(dá)到硅MOSFET可靠性水平,明顯優(yōu)于C公司與I公司器件可靠性水平。
派恩杰器件Rdson不隨開關(guān)次數(shù)變化,C公司器件Rdson變化率外推至20年可能會達(dá)到10%左右,I公司器件Rdson變化率外推至20年可能會超過100%左右。
考慮到功率器件的實(shí)際應(yīng)用工況會更加復(fù)雜,可靠性問題可能會出現(xiàn)更為惡劣的情況,功率器件在實(shí)際工況的參數(shù)漂移可能會更大。
應(yīng)用影響
若功率器件的性能不穩(wěn)定發(fā)生漂移,輕則降低轉(zhuǎn)換器效率,重則導(dǎo)致轉(zhuǎn)換器炸機(jī)。器件性能的漂移會降低器件本身的使用壽命,甚至可能會導(dǎo)致一些災(zāi)難性的后果。特別是在功率芯片并聯(lián)領(lǐng)域,比如模塊,芯片的參數(shù)發(fā)生漂移,可能導(dǎo)致并聯(lián)不均流,模塊更容易損壞或者壽命更短。從上述可靠性試驗(yàn)結(jié)果來看,派恩杰的SiC MOSFET性能是最穩(wěn)定的,最適合用于并聯(lián)的。
結(jié)論
作為一種更接近實(shí)際應(yīng)用的可靠性測試方法,AC BTI能夠更加準(zhǔn)確的評估SiC MOSFET芯片的可靠性,是SiC MOSFET必不可少的可靠性測試項(xiàng)目之一。在同等試驗(yàn)條件下,平面柵的SiC MOSFET的AC BTI可靠性優(yōu)于溝槽柵的可靠性,派恩杰SiC MOSFET的AC BTI可靠性優(yōu)于國際一流廠商C公司和I公司,派恩杰的SiC MOSFET功率器件設(shè)計(jì)和工藝能力優(yōu)于國際一流廠商C公司和I公司。派恩杰碳化硅MOSFET是全球碳化硅功率器件可靠性最高和性能最穩(wěn)定的碳化硅功率器件之一。
關(guān)于派恩杰
第三代寬禁帶半導(dǎo)體材料前沿技術(shù)探討交流平臺,幫助工程師了解SiC/GaN全球技術(shù)發(fā)展趨勢。所有內(nèi)容都是SiC/GaN功率器件供應(yīng)商派恩杰半導(dǎo)體創(chuàng)始人黃興博士和派恩杰工程師原創(chuàng)。
黃興博士
派恩杰 總裁 技術(shù)總監(jiān)
美國北卡州立大學(xué)博士,師承Dr. B. Jayant Baliga(IEEE終身會員,美國科學(xué)院院士,IGBT發(fā)明者,奧巴馬授予國家技術(shù)創(chuàng)新獎(jiǎng)?wù)拢┡cDr. Alex Q. Huang(IEEE Fellow, 發(fā)射極關(guān)斷晶閘管(ETO)的發(fā)明者)。10余年碳化硅與氮化鎵功率器件經(jīng)驗(yàn),在世界頂尖碳化硅實(shí)驗(yàn)室參與美國自然科學(xué)基金委FREEDM項(xiàng)目、美國能源部Power America項(xiàng)目,曾任職于Qorvo Inc.、聯(lián)合碳化硅。2018年成立派恩杰半導(dǎo)體,立志于幫助中國建立成熟的功率器件產(chǎn)業(yè)鏈。
派恩杰半導(dǎo)體
成立于2018年9月的第三代半導(dǎo)體功率器件設(shè)計(jì)和方案商,國際標(biāo)準(zhǔn)委員會JC-70會議的主要成員之一,參與制定寬禁帶半導(dǎo)體功率器件國際標(biāo)準(zhǔn)。發(fā)布了100余款650V/1200V/1700V SiC SBD、SiC MOSFET、GaN HEMT功率器件,其中SiC MOSFET芯片已大規(guī)模導(dǎo)入國產(chǎn)新能源整車廠和Tier 1,其余產(chǎn)品廣泛用于大數(shù)據(jù)中心、超級計(jì)算與區(qū)塊鏈、5G通信基站、儲能/充電樁、微型光伏、城際高速鐵路和城際軌道交通、家用電器以及特高壓、航空航天、工業(yè)特種電源、UPS、電機(jī)驅(qū)動(dòng)等領(lǐng)域。
文章來源:派恩杰半導(dǎo)體
審核編輯 黃宇
-
IC
+關(guān)注
關(guān)注
36文章
5990瀏覽量
176318 -
功率器件
+關(guān)注
關(guān)注
41文章
1802瀏覽量
90671 -
SiC
+關(guān)注
關(guān)注
29文章
2899瀏覽量
62986 -
碳化硅
+關(guān)注
關(guān)注
25文章
2839瀏覽量
49291
發(fā)布評論請先 登錄
相關(guān)推薦
40mR/650V SiC 碳化硅MOSFET,替代30mR 超結(jié)MOSFET或者20-30mR的GaN!
什么是MOSFET柵極氧化層?如何測試SiC碳化硅MOSFET的柵氧可靠性?
瞻芯電子參與編制SiC MOSFET可靠性和動(dòng)態(tài)開關(guān)測試標(biāo)準(zhǔn)
![瞻芯電子參與編制<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b><b class='flag-5'>可靠性</b>和動(dòng)態(tài)開關(guān)測試標(biāo)準(zhǔn)](https://file1.elecfans.com/web3/M00/00/70/wKgZO2dJVa2AV_PnAAAlelLTuos669.png)
重磅 9項(xiàng) SiC MOSFET測試與可靠性標(biāo)準(zhǔn)發(fā)布
![重磅 9項(xiàng) <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>測試與<b class='flag-5'>可靠性</b>標(biāo)準(zhǔn)發(fā)布](https://file1.elecfans.com//web2/M00/0C/E1/wKgaomc9T9eAJupnAAGx5orC4xo739.jpg)
瞻芯電子交付碳化硅(SiC)MOSFET逾千萬顆 產(chǎn)品長期可靠性得到驗(yàn)證
![瞻芯電子交付碳化硅(<b class='flag-5'>SiC</b>)<b class='flag-5'>MOSFET</b>逾千萬顆 產(chǎn)品長期<b class='flag-5'>可靠性</b>得到驗(yàn)證](https://file1.elecfans.com//web2/M00/09/1F/wKgaomb2G8qAPP5dAADZ27Hvafo111.jpg)
瞻芯電子第三代1200V 13.5mΩ SiC MOSFET通過車規(guī)級可靠性測試認(rèn)證
![瞻芯電子第三代1200V 13.5mΩ <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>通過車規(guī)級<b class='flag-5'>可靠性</b>測試認(rèn)證](https://file1.elecfans.com/web2/M00/F2/31/wKgZomZ4yWCAdONmAABzW6iU5Bg220.png)
AC/DC電源模塊的可靠性設(shè)計(jì)與測試方法
![<b class='flag-5'>AC</b>/DC電源模塊的<b class='flag-5'>可靠性</b>設(shè)計(jì)與測試方法](https://file1.elecfans.com/web2/M00/E0/78/wKgZomY4ae-Aeu4fAAK_x8d7c1s170.png)
碳化硅模塊(SiC模塊/MODULE)大電流下的驅(qū)動(dòng)器研究
蓉矽半導(dǎo)體SiC MOSFET通過AEC-Q101車規(guī)級考核和HV-H3TRB加嚴(yán)可靠性驗(yàn)證
![蓉矽半導(dǎo)體<b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>通過AEC-Q101車規(guī)級考核和HV-H3TRB加嚴(yán)<b class='flag-5'>可靠性</b>驗(yàn)證](https://file1.elecfans.com/web2/M00/C4/F0/wKgaomXwHnqAM-deAABIrKMym8g912.png)
瞻芯電子第二代650V SiC MOSFET產(chǎn)品通過車規(guī)級可靠性認(rèn)證
瞻芯電子開發(fā)的3款第二代650V SiC MOSFET通過了車規(guī)級可靠性認(rèn)證
![瞻芯電子開發(fā)的3款第二代650V <b class='flag-5'>SiC</b> <b class='flag-5'>MOSFET</b>通過了車規(guī)級<b class='flag-5'>可靠性</b>認(rèn)證](https://file1.elecfans.com/web2/M00/C4/98/wKgaomXuXd-AXyZQAAASLowCKjs098.png)
評論