1.引言
近年來(lái)我國(guó)大氣環(huán)境污染日益嚴(yán)重,能見(jiàn)度作為主要?dú)庀蟓h(huán)境參數(shù)之一,在天氣變化、大氣污染狀況和渾濁程度等方面有著重要的環(huán)境監(jiān)測(cè)意義,同時(shí)也在高速公路、航海、航空等交通運(yùn)輸以及軍事等領(lǐng)域發(fā)揮了重要作用。
目前能見(jiàn)度檢測(cè)儀器主要有以下兩個(gè)方面特點(diǎn):一是目前公路交通、海港、機(jī)場(chǎng)等場(chǎng)所使用的能見(jiàn)度檢測(cè)儀器基本上均為國(guó)外產(chǎn)品,一臺(tái)動(dòng)輒過(guò)十萬(wàn)的高昂價(jià)格限制了應(yīng)用規(guī)模,往往適用于大區(qū)域的天氣性能見(jiàn)度測(cè)量,難以覆蓋到“團(tuán)霧”
多發(fā)的局部小范圍區(qū)域,存在預(yù)警檢測(cè)盲點(diǎn);二是現(xiàn)有的能見(jiàn)度檢測(cè)儀器更注重測(cè)量精度,功能方面則較為單一,擴(kuò)展兼容性差,數(shù)據(jù)傳輸方式基本還是以有線傳輸為主,沒(méi)有有線通訊網(wǎng)絡(luò)建設(shè)的地方就難以方便地架設(shè),造成預(yù)警盲點(diǎn)區(qū)域較多,需要依賴(lài)基礎(chǔ)建設(shè)方面的投入。因此,針對(duì)現(xiàn)有問(wèn)題,應(yīng)用新技術(shù)設(shè)計(jì)一種低成本、低功耗、擴(kuò)展兼容性好、能夠靈活接入到現(xiàn)有智能交通監(jiān)測(cè)網(wǎng)絡(luò)的低能見(jiàn)度預(yù)警檢測(cè)前端設(shè)備。
2.能見(jiàn)度的測(cè)量理論
根據(jù)氣象能見(jiàn)度的定義,白天和夜晚能見(jiàn)度的概念有顯著的差異。首先,白天能見(jiàn)度是以晴朗無(wú)云的天空為背景,而夜晚的觀測(cè)背景是較黑的夜空;其次,二者的目標(biāo)物也有區(qū)別,白天為黑色物體,夜晚則為燈光,屬于點(diǎn)光源。所以白天和夜晚能見(jiàn)度測(cè)量依據(jù)的是不同的理論,分別為Koschmiedir“大氣光”亮度傳輸公式和Allard的大氣燈光照度傳輸公式。夜間能見(jiàn)度受影響的因素更多,測(cè)量過(guò)程遠(yuǎn)比白天能見(jiàn)度復(fù)雜,計(jì)算誤差也更大。事實(shí)上,出于一致性和簡(jiǎn)易性考慮,目前大部分的能見(jiàn)度測(cè)量?jī)x器主要以Koschmiedir定律作為基本的理論依據(jù),儀器測(cè)量出的能見(jiàn)度值對(duì)于白天具有實(shí)際價(jià)值,基本上等同于白天的實(shí)際能見(jiàn)度,而對(duì)于夜晚僅具有物理意義,但作為參考對(duì)夜間行車(chē)間距和車(chē)速等行業(yè)應(yīng)用仍具有指導(dǎo)作用。
2.1 能見(jiàn)度的計(jì)算公式
Koschmiedir定律可由能見(jiàn)度測(cè)量的基本方程Bouguer-Lambert定律推導(dǎo)出,根據(jù)Bouguer-Lambert定律:
式中, F 是在大氣中經(jīng)過(guò)x路徑長(zhǎng)度接受的光通量, 0 F 是在x=0時(shí)的光通量,σ 為消光系數(shù)。求導(dǎo)可得:
雖然Bouguer-Lambert定律針對(duì)的僅是單一光譜,但作為近似,對(duì)光譜通量同樣適用。透射因數(shù)為:
式(5)即為Koschmiedir定律,式(6)為白天能見(jiàn)度的基本計(jì)算公式。Koschmiedir定律是確定天白能見(jiàn)度的理論基礎(chǔ),反映的是假定消光系數(shù)為常數(shù),也就是大氣處于均勻狀態(tài)時(shí),對(duì)于以水平天空為背景的黑色目標(biāo)物,大氣的透明程度以及目標(biāo)物對(duì)于背景的對(duì)比度隨距離變化的規(guī)律。由該定律可知,只要測(cè)得消光系數(shù)σ ,就可計(jì)算得到能見(jiàn)度值。
氣象觀測(cè)上,通常取視覺(jué)閥值ε =0.02,而大氣光學(xué)視程(MOR)定義ε =0.05,代入式(5),可得到氣象能見(jiàn)度和MOR的值:
航空業(yè)出于飛行安全考慮,通常推薦選用較高的視覺(jué)閥值ε =0.05,采用該值計(jì)算得到的能見(jiàn)度更為嚴(yán)格,更接近行業(yè)的實(shí)際需要。而高速公路等要求高安全性的應(yīng)用領(lǐng)域也常常以該視覺(jué)閥值作為參考。因此式(8)是最常用的白天能見(jiàn)度的基本計(jì)算公式。本文研究研究測(cè)量的能見(jiàn)度就是MOR.
2.2 前向散射式能見(jiàn)度測(cè)量原理
根據(jù)Koschmiedir定律,只要測(cè)得大氣消光系數(shù)σ ,就可以計(jì)算得到能見(jiàn)度,可見(jiàn)消光系數(shù)σ 是測(cè)量能見(jiàn)度的關(guān)鍵。前向散射式能見(jiàn)度測(cè)量?jī)x器就是通過(guò)從適當(dāng)?shù)慕嵌葴y(cè)量散射光強(qiáng)度來(lái)計(jì)算消光系數(shù),進(jìn)而獲得能見(jiàn)度。其原理主要基于三個(gè)假設(shè)前提:
(1)大氣均質(zhì),大氣內(nèi)影響能見(jiàn)度的各種顆粒是均勻分布的,即消光系數(shù)σ 為常數(shù)。該假設(shè)是所有能見(jiàn)度測(cè)量?jī)x器的設(shè)計(jì)基礎(chǔ),無(wú)論是采用何種方式測(cè)量能見(jiàn)度,都是用有限空間的被測(cè)樣本代表相對(duì)較大范圍的大氣狀態(tài),不可能包括所有的大氣顆粒。由于大氣中顆粒狀態(tài)變化是大范圍而且相對(duì)較為緩慢過(guò)程,在一定尺度空間范圍,可以認(rèn)為呈均質(zhì)狀態(tài)。
(2)大氣消光系數(shù)σ 等于大氣中霧、霾、雨和雪的散射系數(shù),也就是說(shuō)大氣分子沒(méi)有吸收或分子內(nèi)部沒(méi)有交互光學(xué)效應(yīng),可以忽略大氣對(duì)光的吸收作用。用A表示大氣的吸收系數(shù),用S σ 表示散射系數(shù),則消光系數(shù)σ 有:
這一前提的正確性與大氣粒子的光學(xué)特性有關(guān),光線在大氣傳播的消光效應(yīng)主要由吸收和散射引起,大氣溶膠主要由水滴構(gòu)成時(shí),對(duì)光線的吸收作用主要取決于光線的傳播距離,若長(zhǎng)度足夠小,則吸收作用便微弱到可以忽略不計(jì)。由于前向散射方式不需要長(zhǎng)的光線傳輸距離,所以測(cè)得的散射系數(shù)就可以認(rèn)為是消光系數(shù)。
(3)通常情況下,選擇適當(dāng)?shù)慕嵌龋⑸鋬x測(cè)量的散射光強(qiáng)與散射系數(shù)成正比例關(guān)系,與散射顆粒的尺寸大小無(wú)關(guān)。該前提可根據(jù)Mie散射理論證明其正確性。
許多學(xué)者通過(guò)對(duì)大量實(shí)驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì),認(rèn)為選擇散射角θ 在20°~50°之間時(shí),散射相函數(shù)P(θ )對(duì)氣溶膠譜分布的變化不敏感,基本為常數(shù),而且散射光更強(qiáng)。根據(jù)Mie散射理論,此時(shí)散射光強(qiáng)度I (θ )與散射相函數(shù)P(θ )、散射系數(shù) S σ 、以及入射光強(qiáng)的關(guān)系為線性正比關(guān)系:
式(11)中,散射角θ 由儀器發(fā)射器與接收器的擺放角度決定;入射光強(qiáng)0 I 取決于光源與透鏡的參數(shù),由儀器的具體光學(xué)設(shè)計(jì)確定,為定值;根據(jù)前提三可知散射相函數(shù)P(θ )為常數(shù)。由此可見(jiàn),能見(jiàn)度值V與散射光強(qiáng)成正比關(guān)系,即接收到的散射光強(qiáng)越強(qiáng),此時(shí)能見(jiàn)度越高,反之散射光強(qiáng)越弱,能見(jiàn)度越低。
3.硬件系統(tǒng)設(shè)計(jì)
3.1 前向散射式紅外光發(fā)射和接收裝置的光路與結(jié)構(gòu)設(shè)計(jì)
低能見(jiàn)度預(yù)警檢測(cè)儀的發(fā)射與接收裝置分置于支架的兩端,成35°夾角,發(fā)射光配置成雙光路,用于前向散射和光強(qiáng)穩(wěn)定參考。發(fā)射光源采用940nm波長(zhǎng)的紅外LED組,用固定的低頻率方波進(jìn)行調(diào)制發(fā)射,經(jīng)一定體積空氣柱散射進(jìn)入接收端,接收端選取對(duì)該波長(zhǎng)響應(yīng)良好的光電接收傳感器,將接收到的散射光轉(zhuǎn)換為電信號(hào)后進(jìn)行調(diào)理和采集。發(fā)射器的參考光路中布置有光電接收器件,通過(guò)監(jiān)測(cè)發(fā)射裝置參考光路的光強(qiáng),采用負(fù)反饋比較測(cè)量法進(jìn)行穩(wěn)定校準(zhǔn),補(bǔ)償因溫度變化以及器件老化效應(yīng)等原因造成的發(fā)射光強(qiáng)不穩(wěn)定的問(wèn)題,減小系統(tǒng)測(cè)量誤差。
3.2 基于微弱信號(hào)檢測(cè)的散射光接收信號(hào)調(diào)理電路設(shè)計(jì)
接收到的散射光轉(zhuǎn)換而成的電信號(hào)實(shí)際上是深埋在噪聲和干擾中的調(diào)制過(guò)的納安級(jí)的交流電流信號(hào)需要應(yīng)用微弱信號(hào)檢測(cè)技術(shù)進(jìn)行調(diào)理轉(zhuǎn)換為幅度范圍合適的直流電壓信號(hào)送給AD進(jìn)行采樣和數(shù)值讀取。
微弱電流首先經(jīng)過(guò)高輸入阻抗的跨導(dǎo)前置放大,得到的是信噪比較低的交流電壓小信號(hào),通過(guò)多階低噪聲高通、低通濾波器組成的帶通濾波器組,濾除50Hz工頻干擾并抑制高頻率干擾噪聲,進(jìn)行交流放大后送給鎖相放大器。鎖相放大器是各種微弱信號(hào)檢測(cè)技術(shù)中應(yīng)用廣泛、行之有效的檢測(cè)手段之一,利用信號(hào)具有自相關(guān)性而信號(hào)與干擾噪聲不相關(guān)的原理,從背景噪聲中提取有用信號(hào),主要由相位敏感檢波器和低通濾波器構(gòu)成。信號(hào)經(jīng)過(guò)低通濾波得到的直流電壓的幅度即代表需檢測(cè)的接收散射光強(qiáng)。信號(hào)調(diào)理電路的設(shè)計(jì)中還需要考慮屏蔽、抗干擾措施以及低噪聲雙電源供電的實(shí)現(xiàn)。
3.3 以Cortex-M3架構(gòu)微處理器為核心的控制系統(tǒng)硬件實(shí)現(xiàn)
系統(tǒng)控制和數(shù)據(jù)處理部分采用基于ARM Cotex-M3內(nèi)核架構(gòu)的LPC17xx系列微處理器為核心的硬件平臺(tái)。LPC17xx系列具有較高的運(yùn)行速度和豐富的外設(shè)接口,滿足系統(tǒng)低成本、低功耗、高性能等方面的設(shè)計(jì)要求。控制系統(tǒng)硬件主要包括微處理器及其支持電路、實(shí)時(shí)時(shí)鐘(RTC)、SD卡本地?cái)?shù)據(jù)存儲(chǔ)電路、數(shù)據(jù)傳輸接口電路、AD采樣電路、溫度監(jiān)測(cè)電路等。
AD采樣使用16位精度具有自動(dòng)校準(zhǔn)功能的AD7705芯片,使用SPI總線與處理器連接。溫度傳感器芯片選用LM75,使用IIC總線連接到處理器。數(shù)據(jù)傳輸主要通過(guò)USART和SPI數(shù)據(jù)總線接口實(shí)現(xiàn)。充分利用LPC17xx的定時(shí)器,實(shí)現(xiàn)數(shù)字波形發(fā)生器和數(shù)字移相器,輸出用于發(fā)射光源調(diào)制的低頻方波信號(hào),以及用于鎖相放大器相敏檢波的移相參考波形,采用負(fù)反饋比較測(cè)量法自動(dòng)確定所需調(diào)節(jié)的相位,以替代傳統(tǒng)的模擬電路搭建的方波發(fā)生電路及移相電路,可簡(jiǎn)化硬件設(shè)計(jì)和相位調(diào)節(jié)的調(diào)試過(guò)程,有利于提高穩(wěn)定性??驁D如圖1所示。
3.4 多種傳輸方式的預(yù)警數(shù)據(jù)輸出方案設(shè)計(jì)
低能見(jiàn)度預(yù)警檢測(cè)儀的數(shù)據(jù)輸出支持有線傳輸、短距離無(wú)線數(shù)傳以及公網(wǎng)數(shù)據(jù)傳輸多種方式,以應(yīng)對(duì)現(xiàn)場(chǎng)復(fù)雜的安裝條件以及多樣的應(yīng)用需求,靈活方便地接入到預(yù)警監(jiān)測(cè)網(wǎng)絡(luò)。有線傳輸使用MAX232和MAX13082接口芯片,與微處理器UART連接,完成TTL電平到RS232和RS485電平標(biāo)準(zhǔn)的轉(zhuǎn)換。短距離RF無(wú)線數(shù)傳采用Silicon Labs EZRadioPRO系列ISM頻段無(wú)線收發(fā)一體芯片SI4432,該芯片最新版本為B1版,與微處理使用SPI總線進(jìn)行數(shù)據(jù)收發(fā)通信,在240-960MHz頻率下輸出功率可達(dá)+20dBm,接收靈敏度-117dBm,實(shí)現(xiàn)500米范圍內(nèi)與可變信息牌、路標(biāo)等現(xiàn)場(chǎng)預(yù)警執(zhí)行設(shè)備的可靠數(shù)據(jù)傳輸。在沒(méi)有有線通訊網(wǎng)絡(luò)建設(shè)的地方,使用GPRS或CDMA公網(wǎng)數(shù)據(jù)傳輸,將預(yù)警情況及時(shí)通報(bào)給指揮監(jiān)控中心及相關(guān)值班人員。多種方式數(shù)據(jù)傳輸采用模塊化設(shè)計(jì),可根據(jù)需要進(jìn)行相應(yīng)傳輸模塊的配置和更換,有助于降低設(shè)備成本。
低能見(jiàn)度預(yù)警檢測(cè)儀數(shù)據(jù)收發(fā)電路如圖2所示,其中U9為SI4432,由于采用單天線形式,使用了射頻收發(fā)轉(zhuǎn)換開(kāi)關(guān)UPG2214T(圖2中U6)進(jìn)行收發(fā)切換。
4.軟件設(shè)計(jì)
系統(tǒng)軟件設(shè)計(jì)采用RL-RTX實(shí)時(shí)操作系統(tǒng)(RTOS),以實(shí)現(xiàn)多任務(wù)的嵌入式程序應(yīng)用。使用RTOS可簡(jiǎn)化任務(wù)的調(diào)度和維護(hù),對(duì)CPU、內(nèi)存等系統(tǒng)資源進(jìn)行靈活配置。程序開(kāi)發(fā)、編譯及仿真使用ARM公司的RealView MDK開(kāi)發(fā)工具集的新版本μVision 4.系統(tǒng)的主要功能包括能見(jiàn)度數(shù)值等多信息的采集、多種方式的數(shù)據(jù)傳輸以及數(shù)據(jù)存儲(chǔ)等,總體工作流程如圖3所示。系統(tǒng)上電后,首先開(kāi)始系統(tǒng)初始化工作,進(jìn)行對(duì)硬件模塊的配置以及儀器自檢。初始化完成,系統(tǒng)開(kāi)始不間斷地對(duì)能見(jiàn)度數(shù)值、溫度信息等數(shù)據(jù)進(jìn)行采集,獲得的數(shù)據(jù)結(jié)合時(shí)間信息存入SD卡。當(dāng)檢測(cè)到的能見(jiàn)度連續(xù)一段時(shí)間均低于設(shè)置的報(bào)警閥值時(shí),觸發(fā)低能見(jiàn)度報(bào)警機(jī)制,系統(tǒng)通過(guò)有線或無(wú)線多種方式傳輸網(wǎng)絡(luò)向指揮中心進(jìn)行報(bào)警,以及實(shí)時(shí)更新現(xiàn)場(chǎng)可變信息牌、預(yù)警路標(biāo)等顯示設(shè)備。圖3所示為系統(tǒng)總體工作流程。
5.低能見(jiàn)度場(chǎng)外實(shí)驗(yàn)
為了檢驗(yàn)樣機(jī)的性能和可靠性,2012年12月至2013年1月,對(duì)樣機(jī)在我市進(jìn)行了為期2個(gè)月的場(chǎng)外實(shí)驗(yàn),直接測(cè)量輸出大氣能見(jiàn)度值,實(shí)驗(yàn)時(shí)間分別選在多霧發(fā)生的凌晨和傍晚,為方便分析,在不同能見(jiàn)度區(qū)間挑取了典型數(shù)據(jù),并與人工觀測(cè)值進(jìn)行對(duì)比,結(jié)果如圖4所示。從圖4可以看出,樣機(jī)的檢測(cè)精度與能見(jiàn)度值成反比,隨著能見(jiàn)度的升高而降低,這是因?yàn)樵谳^高的能見(jiàn)度天氣下,環(huán)境光背景噪聲和雜光干擾更大,檢測(cè)到的散射光信號(hào)更為微弱,測(cè)量精度也就越低。系統(tǒng)樣機(jī)在500m范圍內(nèi)檢測(cè)誤差小于±5%,而500~2000m誤差則增加到約±10%,完全符合系統(tǒng)±20%的測(cè)量精度要求。
6.結(jié)論
散射式低能見(jiàn)度預(yù)警檢測(cè)儀主要由紅外光發(fā)射和接收裝置、信號(hào)調(diào)理模塊、控制模塊、預(yù)警數(shù)據(jù)輸出模塊和電源模塊組成。本文提出的基于Si4432散射式大氣低能見(jiàn)度儀的設(shè)計(jì)方案。方案中所設(shè)計(jì)系統(tǒng)的控制和數(shù)據(jù)處理采用基于ARMC o r t e x - M 3內(nèi)核的新型微處理器,運(yùn)行RTOS實(shí)時(shí)操作系統(tǒng),有利于提高運(yùn)行效率和系統(tǒng)性能,便于升級(jí)、維護(hù)和擴(kuò)展。具有良好的社會(huì)效益和廣闊的產(chǎn)業(yè)化前景。
-
傳感器
+關(guān)注
關(guān)注
2553文章
51467瀏覽量
756977 -
微處理器
+關(guān)注
關(guān)注
11文章
2274瀏覽量
82818 -
檢測(cè)儀
+關(guān)注
關(guān)注
5文章
4128瀏覽量
42522
發(fā)布評(píng)論請(qǐng)先 登錄
相關(guān)推薦
透射式能見(jiàn)度測(cè)量裝置系統(tǒng)電路設(shè)計(jì) —電路圖天天讀(60)
![透射<b class='flag-5'>式</b><b class='flag-5'>能見(jiàn)度</b>測(cè)量裝置系統(tǒng)電路設(shè)計(jì) —電路圖天天讀(60)](https://file1.elecfans.com//web2/M00/A6/7B/wKgZomUMPgKAIwSwAABAvi0sPLc225.jpg)
一種簡(jiǎn)易的透射式能見(jiàn)度測(cè)量裝置的設(shè)計(jì)方案
![一種簡(jiǎn)易的透射<b class='flag-5'>式</b><b class='flag-5'>能見(jiàn)度</b>測(cè)量裝置的<b class='flag-5'>設(shè)計(jì)方案</b>](https://file1.elecfans.com//web2/M00/A6/6B/wKgZomUMPZiAaRYVAAAIh7Bb6dA759.jpg)
基于Si4432散射式大氣低能見(jiàn)度儀電路設(shè)計(jì)
![基于Si4432<b class='flag-5'>散射</b><b class='flag-5'>式</b><b class='flag-5'>大氣</b><b class='flag-5'>低能見(jiàn)度</b><b class='flag-5'>儀</b>電路設(shè)計(jì)](https://file1.elecfans.com//web2/M00/A6/7C/wKgZomUMPgSAV_RbAAAQ_fZCod0439.jpg)
RTOS-uCOS II經(jīng)典實(shí)例@Cortex-M3
如何設(shè)計(jì)嵌入式數(shù)字?jǐn)z像夜間能見(jiàn)度測(cè)量系統(tǒng)?
微型機(jī)在前向散射式能見(jiàn)度激光測(cè)量系統(tǒng)中的應(yīng)用
基于DSP和CPLD的嵌入式數(shù)字?jǐn)z像夜間能見(jiàn)度測(cè)量系統(tǒng)設(shè)計(jì)淺析
![基于DSP和CPLD的嵌入<b class='flag-5'>式</b>數(shù)字?jǐn)z像夜間<b class='flag-5'>能見(jiàn)度</b>測(cè)量系統(tǒng)設(shè)計(jì)淺析](https://file1.elecfans.com//web2/M00/A7/57/wKgZomUMRAOAJWb4AAARSW7wH4E725.jpg)
能見(jiàn)度天氣現(xiàn)象檢測(cè)儀的簡(jiǎn)單介紹
NJD-2型能見(jiàn)度傳感器說(shuō)明書(shū)
Cortex-M3處理器內(nèi)核與基于Cortex-M3的MCU關(guān)系
![<b class='flag-5'>Cortex-M3</b>處理器內(nèi)核與基于<b class='flag-5'>Cortex-M3</b>的MCU關(guān)系](https://file.elecfans.com/web1/M00/D9/4E/pIYBAF_1ac2Ac0EEAABDkS1IP1s689.png)
能見(jiàn)度監(jiān)測(cè)儀是什么,能見(jiàn)度監(jiān)測(cè)儀的介紹
能見(jiàn)度傳感器_氣象能見(jiàn)度感應(yīng)傳感器
![<b class='flag-5'>能見(jiàn)度</b>傳感器_氣象<b class='flag-5'>能見(jiàn)度</b>感應(yīng)傳感器](https://file.elecfans.com/web2/M00/87/AB/pYYBAGOs9bGAVceiAACB7Wfk7kg672.png)
無(wú)人機(jī)紅外成像在夜間和低能見(jiàn)度環(huán)境下的應(yīng)用
![無(wú)人機(jī)紅外成像在夜間和<b class='flag-5'>低能見(jiàn)度</b>環(huán)境下的應(yīng)用](https://file.elecfans.com/web2/M00/6A/F8/poYBAGMpVfyAIPS3AAANdu-x7L8587.png)
評(píng)論