欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

nuTonomy發(fā)布自動駕駛數(shù)據(jù)集nuScenes

ml8z_IV_Technol ? 2018-09-19 09:15 ? 次閱讀

數(shù)據(jù)集是機器學習算法的命脈——從某種意義上講,數(shù)據(jù)集對于自動駕駛人工智能應用領域,最重要的是它們的質量最高。同時,數(shù)據(jù)集也衍生出自動駕駛行業(yè)新的商業(yè)模式。

nuTonomy今天發(fā)布了一個名為nuScenes的自動駕駛數(shù)據(jù)集,它聲稱其規(guī)模和精確度超過了KITTI、百度的ApolloScape和Udacity自動駕駛汽車數(shù)據(jù)集等公共數(shù)據(jù)集。

數(shù)據(jù)集下載鏈接:

https://d3u7q4379vrm7e.cloudfront.net/download

Scale為nuScenes提供了數(shù)據(jù)注釋,公司首席執(zhí)行官表示,這是有史以來發(fā)布的最健壯的開放源碼,基于多傳感器自動駕駛數(shù)據(jù)集。

NuTonomy編輯了1000多個場景,其中包含140萬幅圖像、40萬次激光雷達掃描(判斷物體之間距離)和110萬個三維邊界框(用RGB相機、雷達和激光雷達組合檢測的物體)。

它們已經通過Scale的傳感器融合注釋API進行了細致的標簽,該API利用人工智能和人類團隊進行數(shù)據(jù)注釋,并且從本周開始面向行業(yè)開源。

近年來,越來越多的公司在加入這個行列。比如,早些時候全球紅外系統(tǒng)供應商Flir發(fā)布了基于熱成像儀拍攝的1萬多張帶標注圖片。Mapillary公司發(fā)布了25000張街道級別的圖像,以及加州大學伯克利分校上傳了10萬張基于RGB相機拍攝的視頻序列。

之所以被稱之為比之前其他公司和機構發(fā)布的數(shù)據(jù)集更為全面,是因為此次數(shù)據(jù)搜集使用了6個攝像頭、1個激光雷達、 5個毫米波雷達、GPS及慣導系統(tǒng),包括對于自動駕駛系統(tǒng)有挑戰(zhàn)性的復雜道路、天氣條件等。

車輛傳感器設置

使用兩輛具有相同傳感器布局的雷諾Zoe汽車在波士頓和新加坡開車,收集數(shù)據(jù)。有關傳感器的位置,請參閱上圖。傳感器發(fā)布數(shù)據(jù)如下:

1x旋轉激光雷達:

5倍長距離雷達傳感器:

相機方向和重疊請參閱下圖:

20Hz捕獲頻率

32個頻道

360°水平視場,+ 10°至-30°垂直視場

80m-100m范圍,可用返回70米,精度±2厘米

每秒高達~139百萬點

用于77GHz

13Hz捕獲頻率

使用調頻連續(xù)波在一個周期內獨立測量距離和速度

距離最遠250米

速度精度為±0.1 km / h

sa'n6x相機:

12Hz捕獲頻率

1 / 1.8英寸CMOS傳感器,1600x1200分辨率

Bayer8格式,每像素1字節(jié)編碼

1600x900 ROI從原始分辨率中裁剪,以減少處理和傳輸帶寬

曝光時間限制為最大20 ms的自動曝光

圖像被解壓縮為BGR格式并壓縮為JPEG

傳感器校準

要獲得高質量的多傳感器數(shù)據(jù)集,必須校準每個傳感器的外在和內在因素。根據(jù)表示相對于自我框架的外部坐標,即后車軸的中點。最相關的步驟如下所述:

LIDAR外在因素:

使用激光襯墊來精確測量激光雷達與自我框架的相對位置。

相機外在因素:

在相機和LIDAR傳感器前面放置一個立方體形狀的校準目標。校準目標由具有已知圖案的三個正交平面組成。在檢測到圖案后,我們通過對齊校準目標的平面來計算從相機到LIDAR的變換矩陣。給定上面計算的LIDAR到自我?guī)儞Q,然后可以計算相機到自我?guī)儞Q和所得到的外部參數(shù)。

雷達外在因素:

將雷達安裝在水平位置。然后通過在城市環(huán)境中駕駛來收集雷達測量值。在過濾移動物體的雷達返回后,校準偏航角,以最小化靜態(tài)物體的補償范圍速率。

相機內在校準:

使用具有一組已知模式的校準目標板來推斷相機的固有和失真參數(shù)。

傳感器同步

為了在激光雷達和攝像機之間實現(xiàn)良好的交叉模態(tài)數(shù)據(jù)對準,當頂部激光雷達掃過攝像機FOV的中心時,會觸發(fā)攝像機的曝光。圖像的時間戳是曝光觸發(fā)時間;并且LIDAR掃描的時間戳是實現(xiàn)當前LIDAR幀的完全旋轉的時間。鑒于相機的曝光時間幾乎是瞬時的,這種方法通常可以產生良好的數(shù)據(jù)對齊。請注意,攝像機以12Hz運行,而激光雷達以20Hz運行。12個相機曝光在20個LIDAR掃描中盡可能均勻地展開,因此并非所有LIDAR掃描都具有相應的相機幀。將攝像機的幀速率降低到12Hz有助于降低感知系統(tǒng)的計算,帶寬和存儲要求。

參與此次數(shù)據(jù)標注的Scale公司,自2016年成立以來,已經為包括Lyft、Voyage、通用汽車、Zoox和Embark在內的客戶標出了超過20億英里的行駛里程。

今年8月,Scale宣布了一輪1800萬美元融資,迄今該公司已籌集到2270萬美元,報告稱去年公司收入增長了15倍。

數(shù)據(jù)標注的對象通常有圖像、語音、文本、視頻、雷達等。圖像類主要針對視覺識別類公司,所要標注的圖像內容包括人像、建筑物、植物、道路、交通標志、車輛等,每項內容下面,又會根據(jù)不同的特征進行不同標簽的標注。

業(yè)內人士表示,一般而言,客戶會有自己的需求,公司依規(guī)而行。目前在國內,阿里巴巴、騰訊、百度等大型互聯(lián)網(wǎng)公司,擁有海量的數(shù)據(jù)標注需求,單個訂單量都是以億元為單位。如此大的訂單,基本都是分包給不同的數(shù)據(jù)標注公司進行處理,國內外還沒有一家公司能夠處理這樣大的訂單。

另外還有自動駕駛公司,以及視覺圖像處理的公司,也有著數(shù)據(jù)標注的強烈的需求,他們需要用標注后的數(shù)據(jù)來訓練人工智能,而人工智能的日趨成熟,是永無止境的。

業(yè)內人士透露,數(shù)據(jù)標注是一個簡單又困難的事情。簡單之處在于,確定了篩選規(guī)則以后,操作人員只需依規(guī)操作即可,沒有執(zhí)行上的難度,而困難之處在于,數(shù)據(jù)標注本質上是要獲得更準確,更精細化的數(shù)據(jù)結果,高質量的數(shù)據(jù)是業(yè)內急需的。

“在數(shù)據(jù)采集上,由原來的普通行車記錄儀的數(shù)據(jù)采集,到現(xiàn)在已有諸多公司開始使用特殊采集設備采集行車數(shù)據(jù)。在數(shù)據(jù)標注上,原來的2D標注到3D標注,再到語義分割,3D點云的標注需求,對數(shù)據(jù)的要求越來越專業(yè)”,龍貓數(shù)據(jù)CEO昝智表示,“我們也正不斷開發(fā)新的標注工具,適配自動駕駛行業(yè)的發(fā)展。”

昝智表示,未來至少10年內,各領域對AI數(shù)據(jù)的獲取需求只增不減。在發(fā)展的不同階段,龍貓數(shù)據(jù)也將不斷關注技術更新,適配新的需求。

而在在行業(yè)內特斯拉是第一家規(guī)模化采集數(shù)據(jù)的汽車制造商,他們很早就用自己的車輛來收集數(shù)據(jù),為無人駕駛技術研發(fā)提供基礎數(shù)據(jù)。

由于沒有獲取車輛數(shù)據(jù)源的通道,目前有很多汽車廠商都在模仿特斯拉的做法,通過在自己公司生產的車輛上安裝采集設備,獲取車輛數(shù)據(jù)并回傳到平臺,這是一種最直接的方式,也是相對比較明智的做法。

目前,全球主流的自動駕駛測試數(shù)據(jù)集包括Cityscapes、Imagenet(ILSVRC)、COCO、PASCAL VOC、CIFAR、MNIST、KITTI、LFW等。

Cityscapes

Cityscapes是由奔馳與2015年推出的,提供無人駕駛環(huán)境下的圖像分割數(shù)據(jù)集。用于評估視覺算法在城區(qū)場景語義理解方面的性能。

Cityscapes包含50個城市不同場景、不同背景、不同季節(jié)的街景,提供5000張精細標注的圖像、20000張粗略標注的圖像、30類標注物體。用PASCAL VOC標準的 intersection-over-union(IoU)得分來對算法性能進行評價。

Cityscapes是目前公認的自動駕駛領域內最具權威性和專業(yè)性的圖像語義分割評測集之一,其關注真實場景下的城區(qū)道路環(huán)境理解,任務難度更高且更貼近于自動駕駛等熱門需求。

KITTI

KITTI是由德國卡爾斯魯厄理工學院和豐田芝加哥技術研究院于2012年聯(lián)合創(chuàng)辦,是目前國際上最大的自動駕駛場景下的計算機視覺算法評測數(shù)據(jù)集。

KITTI用于評測3D目標(機動車、非機動車、行人等)檢測、3D 目標跟蹤、道路分割等計算機視覺技術在車載環(huán)境下的性能。

KITTI包含市區(qū)、鄉(xiāng)村和高速公路等場景采集的真實圖像數(shù)據(jù),每張圖像中多達15輛車和30個行人,還有各種程度的遮擋。

ILSVRC

ILSVRC也就是通常所說的Imagenet數(shù)據(jù)集,是美國斯坦福的計算機科學家李飛飛模擬人類的識別系統(tǒng)建立的。

它是目前深度學習圖像領域應用較多的一個數(shù)據(jù)集,關于圖像分類、定位、檢測等研究工作大多基于此數(shù)據(jù)集展開。Imagenet數(shù)據(jù)集有1400多萬幅圖片,涵蓋2萬多個類別;其中有超過百萬的圖片有明確的類別標注和圖像中物體位置的標注。

COCO

COCO(common objects Dataset)數(shù)據(jù)集,它由微軟贊助,除了基本的圖像的標注信息外,還有對圖像的語義文本描述,COCO數(shù)據(jù)集的特點是開源,這使得它在近三來在圖像分割語義理解領域取得了巨大的進展,Google的開源show and tell生成模型就是在此數(shù)據(jù)集上測試的。

PASCAL VOC

PASCAL VOC是視覺對象的分類識別和檢測的一個基準測試,提供了檢測算法和學習性能的標準圖像注釋數(shù)據(jù)集和標準的評估系統(tǒng)。

雖然它在2012年后便不再舉辦,但其數(shù)據(jù)集圖像質量好,標注完備,非常適合用來測試算法性能。

CIFAR

CIFAR(Canada Institude For Advanced Research)包括CIFAR 10和CIFAR 100兩個數(shù)據(jù)集,它們被標記為8000萬個微型圖像數(shù)據(jù)集的子集。

這些數(shù)據(jù)集是由Vinod Nair、Alex Krizhevsky和Geoffrey Hinton收集的。CIFAR對于圖像分類算法測試來說是一個非常不錯的中小規(guī)模數(shù)據(jù)集。

MNIST

MNIST(THE MNIST DATABASE of handwritten digits)號稱深度學習領域的“Hello World!”,是一個手寫的 數(shù)字數(shù)據(jù)集。當前主流深度學習框架幾乎無一例外將MNIST數(shù)據(jù)集的處理作為介紹及入門第一教程。

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 數(shù)據(jù)集

    關注

    4

    文章

    1209

    瀏覽量

    24845
  • 自動駕駛
    +關注

    關注

    785

    文章

    13940

    瀏覽量

    167073

原文標題:又多了一種數(shù)據(jù)集!nuTonomy發(fā)布自動駕駛數(shù)據(jù)集nuScenes

文章出處:【微信號:IV_Technology,微信公眾號:智車科技】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    FPGA在自動駕駛領域有哪些應用?

    數(shù)據(jù)處理和預處理,實現(xiàn)實時計算和反饋。 二、數(shù)據(jù)傳輸與處理FPGA在自動駕駛中扮演著數(shù)據(jù)傳輸和處理的角色。它能夠支持多種傳感器(如激光雷達、攝像頭、GPS等)的
    發(fā)表于 07-29 17:09

    FPGA在自動駕駛領域有哪些優(yōu)勢?

    領域的主要優(yōu)勢: 高性能與并行處理能力: FPGA內部包含大量的邏輯門和可配置的連接,能夠同時處理多個數(shù)據(jù)流和計算任務。這種并行處理能力使得FPGA在處理自動駕駛中復雜的圖像識別、傳感器數(shù)據(jù)處理等
    發(fā)表于 07-29 17:11

    【話題】特斯拉首起自動駕駛致命車禍,自動駕駛的冬天來了?

    `特斯拉首起自動駕駛致命車禍,自動駕駛的冬天來了?“一個致命的事故一定是由多個小的錯誤組成的。”  7月初,特斯拉發(fā)表博客敘述了NHTSA(美國國家公路交通安全管理局)正在著手調查第一起Tesla
    發(fā)表于 07-05 11:14

    自動駕駛真的會來嗎?

    ,包括進行3D雷達開發(fā),進行360度探測,獲得更完整、全面的數(shù)據(jù)。但大家也知道新型硬件方面成本居高不下,需要時間等到硬件成本不斷降低,才能廣泛應用?!睆堣唇榻B說:  她稱在特斯拉事故之后,圍繞自動駕駛
    發(fā)表于 07-21 09:00

    自動駕駛的到來

      傳統(tǒng)汽車廠商更趨向于通過技術的不斷積累,場景的不斷豐富,逐步從輔助駕駛過渡到半自動駕駛,進而在將來最終實現(xiàn)無人駕駛;某些高科技公司則希望通過各種外部傳感器實時采集海量數(shù)據(jù),處理器經
    發(fā)表于 06-08 15:25

    AI/自動駕駛領域的巔峰會議—國際AI自動駕駛高峰論壇

    已經滲透到了社會生活的方方面面。人工智能在自動駕駛領域將對整個汽車出行領域產生顛覆性變革。汽車的人工智能技術和數(shù)據(jù)后端的最新突破使自動駕駛成為可能。深度學習、高級數(shù)字助理和動態(tài)電子視野方面的新科技
    發(fā)表于 09-13 13:59

    硅谷組建團隊、L3產品落地,想法多多的騰訊自動駕駛

    。值得一提的是,在自動駕駛領域騰訊已經實現(xiàn)了L3產品落地。在此前11月1日騰訊全球合作伙伴大會上,自動駕駛作為其獨立產品首次出現(xiàn)在公眾視野中,當天,騰訊方面還發(fā)布了模擬仿真平臺、高精度地圖和數(shù)
    發(fā)表于 11-13 11:33

    如何讓自動駕駛更加安全?

    上學……在歐洲,一些志愿者家庭參加了自動駕駛汽車在公共道路上的測試。對行駛狀況的監(jiān)測,將給汽車工程師提供高價值的真實道路測試數(shù)據(jù),幫助完善自動駕駛技術。在國內,上海、北京近期開始發(fā)放國內首批智能網(wǎng)聯(lián)汽車
    發(fā)表于 05-13 00:26

    自動駕駛汽車的處理能力怎么樣?

    作在未來20 - 30年中,自動駕駛汽車(AV)將改變我們的駕駛習慣、運輸行業(yè)并更廣泛地影響社會。 我們不僅能夠將汽車召喚到我們的家門口并在使用后將其送走,自動駕駛汽車還將挑戰(zhàn)個人擁有汽車的想法,并
    發(fā)表于 08-07 07:13

    自動駕駛系統(tǒng)要完成哪些計算機視覺任務?

    Geiger 的研究主要集中在用于自動駕駛系統(tǒng)的三維視覺理解、分割、重建、材質與動作估計等方面。他主導了自動駕駛領域著名數(shù)據(jù) KITTI 及多項
    發(fā)表于 07-30 06:49

    自動駕駛系統(tǒng):激光雷達的網(wǎng)絡性能優(yōu)越 針對局部的漸進稀疏技術

    最新研究發(fā)布了一個大型自動駕駛數(shù)據(jù),該數(shù)據(jù)是首個包括5個雷達,1個激光雷達,6個攝像頭,IM
    發(fā)表于 04-01 17:32 ?544次閱讀

    nuScenes數(shù)據(jù)引發(fā)自動駕駛汽車行業(yè)的信息共享文化

    nuImages是一個全新的數(shù)據(jù),包含近100000個帶批注的圖像,這些圖像被選中以生成各種不可預測的、具有挑戰(zhàn)性的駕駛條件。nuImages是為響應用戶需求而創(chuàng)建的,它將幫助自動駕駛
    的頭像 發(fā)表于 09-03 15:22 ?3223次閱讀

    Motional發(fā)布了擴展版本的NuScenes自動駕駛數(shù)據(jù)

    一年前,Scale和NuTonomy發(fā)布自動駕駛數(shù)據(jù)NuScenes,并聲稱,該
    發(fā)表于 09-05 10:25 ?1755次閱讀

    語音數(shù)據(jù)自動駕駛中的應用與挑戰(zhàn)

    隨著人工智能技術的快速發(fā)展,自動駕駛汽車已經成為交通領域的研究熱點。語音數(shù)據(jù)自動駕駛中發(fā)揮著重要的作用,為駕駛員和乘客提供了更加便捷和安
    的頭像 發(fā)表于 12-25 09:48 ?617次閱讀

    自動駕駛領域的數(shù)據(jù)匯總

    發(fā)自動駕駛論文哪少的了數(shù)據(jù),今天筆者將為大家推薦一篇最新的綜述,總結了200多個自動駕駛領域的數(shù)據(jù)
    的頭像 發(fā)表于 01-19 10:48 ?1082次閱讀
    <b class='flag-5'>自動駕駛</b>領域的<b class='flag-5'>數(shù)據(jù)</b><b class='flag-5'>集</b>匯總