欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復
登錄后你可以
  • 下載海量資料
  • 學習在線課程
  • 觀看技術視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認識你,還能領取20積分哦,立即完善>

3天內不再提示

無人車領域的主要研究進展分析

ml8z_IV_Technol ? 來源:未知 ? 作者:胡薇 ? 2018-10-28 09:44 ? 次閱讀

近年來,傳統(tǒng)汽車車廠與互聯(lián)網(wǎng)企業(yè)選擇了兩條不同的道路來發(fā)展無人車。傳統(tǒng)汽車廠商希望先發(fā)展先進輔助駕駛系統(tǒng)(ADAS),再逐步過渡到人車協(xié)同駕駛,最終實現(xiàn)無人車。而互聯(lián)網(wǎng)企業(yè),則希望從低層次的普通無智能車輛一步跳躍式發(fā)展至全自動無人車。隨著工業(yè)界對無人車的投入力度加大,無人車相關研究也獲得了大量研究者的關注。因此,本報告圍繞無人車的環(huán)境感知、決策和控制三個主要方面,介紹近幾年國內學者在無人車領域的主要研究進展,分析國際學科發(fā)展趨勢及國內的研究特色與差距。

一、引言

無人車是指通過車載傳感系統(tǒng)感知環(huán)境,自動規(guī)劃行車路線并控制車輛實現(xiàn)預定駕駛目標的智能汽車。依據(jù)自動駕駛程度的不同,美國高速公路安全管理局(NHTSA)將無人車劃分為 5 個層次,而美國汽車工程師學會(SAE)則將智能汽車劃分為 6 個層次[1]。雖然這兩種劃分方式在細節(jié)上存在差異,但是它們都是從低層次的普通無智能車輛,逐步過渡到最高層次的全自動無人車。

近年來,傳統(tǒng)汽車車廠與互聯(lián)網(wǎng)企業(yè)選擇了兩條不同的道路來發(fā)展無人車。傳統(tǒng)汽車廠商希望先發(fā)展先進輔助駕駛系統(tǒng)(ADAS),再逐步過渡到人車協(xié)同駕駛,最終實現(xiàn)無人車。而互聯(lián)網(wǎng)企業(yè),則希望從低層次的普通無智能車輛一步跳躍式發(fā)展至全自動無人車。隨著工業(yè)界對無人車的投入力度加大,無人車相關研究也獲得了大量研究者的關注。因此,本報告圍繞無人車的環(huán)境感知、決策和控制三個主要方面,介紹近幾年國內學者在無人車領域的主要研究進展,分析國際學科發(fā)展趨勢及國內的研究特色與差距。

二、我國無人車的發(fā)展現(xiàn)狀

(一)無人車的環(huán)境感知

感知系統(tǒng)是無人車系統(tǒng)的重要組成部分。感知主要是指運用傳感器、定位與通信等技術,來獲取、整合車輛行駛時外部環(huán)境信息。其主要功能包括車道檢測、交通參與者檢測(車輛、行人等)、交通標志檢測和其他車外環(huán)境檢測等。

1.車道檢測

近年來研究者提出了多種車道檢測方法。例如,清華大學的研究者采用了一種基于顏色信息的方法,利用道路尺寸形狀和動態(tài)信息檢測車道,可以很好地將遮擋和真實的車道線區(qū)分開[2]。常見的方法對于結構化道路效果較好,但在車道線并不一定清晰或存在的情況下容易誤判。因此,目前很多研究機構將重心更多轉移到了對非結構化道路的檢測 , 即對二級道路或越野道路的檢測。

2.交通標志檢測

交通標志檢測主要包括兩個基本環(huán)節(jié):交通標志的檢測和判別[3,4]。目前常用的交通標志檢測方法包括邊緣檢測、顏色分割[5]等;而常用的交通標志判別方法,主要方法包括基于神經(jīng)網(wǎng)絡[6]、基于形狀(模式匹配)[7]和基于顏色等方法。目前,越來越多的研究將重心轉向神經(jīng)網(wǎng)絡方法,普遍可以達到95% 以上的識別率。

3.車輛檢測

車輛檢測可使用毫米波段雷達、視覺傳感器等多種設備。中國科學院自動化研究所的研究者對于最近幾年該領域的研究方法進行了很好的總結[8]。目前主要的檢測過程大致分為三步:

(1)假設產(chǎn)生,即定位感興趣的區(qū)域。常用方法有基于二維圖像的先驗知識、基于立體視覺、基于運動產(chǎn)生的光流等。

(2)假設驗證,即核實車輛是否存在。常用方法有基于顯性規(guī)則(基于模板)和基于隱形規(guī)則(基于外觀)兩種。

(3)車輛跟蹤[9],需要根據(jù)先前幀的車輛位置推測出現(xiàn)在的車輛位置。

由于攝像頭采集的本質是三維環(huán)境在二維投影上的表征,不可避免地會損失部分深度信息,因此近年來基于立體視覺技術的道路圖像采集得到更多的關注。相對于視覺傳感器,毫米波雷達的優(yōu)點是不受光線、天氣等因素的干擾,因此與圖像數(shù)據(jù)融合后可以得到更準確可靠的檢測結果。

4.行人檢測

近年來,研究者提出了多種基于視覺傳感器和紅外線傳感器的行人檢測方法。其過程可分為三步:行人定位[10]、行人識別與行人跟蹤。行人定位方面,我國中科院電子所提出了基于色彩分層模型的實時多目標魯棒跟蹤算法[10]。行人識別方面,香港中文大學使用卷積神經(jīng)網(wǎng)絡將錯誤率降至 11%[11],而中科院計算研究所[12]同時最小化經(jīng)驗風險與表征學習風險,區(qū)別化學習不同人體結構特征,并以此提高行人識別率。行人跟蹤方面則主要使用卡爾曼濾波、Condensation 算法和動態(tài)貝葉斯網(wǎng)絡等方法。特別是隨著深度學習技術的成功應用,行人檢測的精度在最近幾年中有了顯著的提高。

5.聯(lián)合檢測

為了應對單個傳感器數(shù)據(jù)可靠性低、有效探測范圍存在盲區(qū)等局限性,目前在無人車感知系統(tǒng)構建時,一般使用多種傳感器進行數(shù)據(jù)采集,利用多傳感器信息融合技術對檢測數(shù)據(jù)進行分析、綜合與平衡,通過互補特性增強容錯性,從而得到所需要的檢測信息。

(二)無人車的決策

當前無人駕駛決策主要研究短期軌跡規(guī)劃。目前,該領域的研究的熱點與難點主要集中在如何合理考慮車輛動力學特征、避撞以及節(jié)能舒適三類約束,規(guī)劃有效的軌跡。

1.考慮車輛動力學特性約束的無人駕駛軌跡規(guī)劃

軌跡規(guī)劃需要充分考慮車輛動力學系統(tǒng)具有高度非線性、時變性以及各類機械約束等特點,保證軌跡的可行性[13,14]。清華大學[13]的研究者基于車輛運動學特性進行車輛軌跡規(guī)劃,其控制率簡單、易實現(xiàn)。吉林大學[14]的研究者在研究無人駕駛動力學特性約束時,提出了載荷轉移率等高線圖以及載荷轉移率防側翻指標,并驗證了其作為無人駕駛軌跡規(guī)劃的側傾約束指標的有效性。

2.考慮障礙物避撞的無人駕駛軌跡規(guī)劃

避障主要研究如何搜尋可供軌跡規(guī)劃的空間,進行動作決策,最后規(guī)劃車輛軌跡以避免行駛過程中發(fā)生碰撞。國防科技大學的研究學者就采用激光雷達檢測障礙物以確定原始運動軌跡,并采用共軛梯度非線性最優(yōu)化算法以及 Bezier 插值方法修正原始運動軌跡,最終實現(xiàn)避障軌跡規(guī)劃[15]。

3.考慮能耗和舒適度的無人駕駛軌跡規(guī)劃

駕駛員在不同道路工況下,對時間、距離、能耗以及舒適度等要求的偏重不一。在實際應用中,如何針對不同情況綜合考慮這些軌跡規(guī)劃目標,是目前的研究難點之一。時間最短或軌跡最短的行駛軌跡并不一定具有最低能耗和最佳舒適度。香港城市大學[16]的研究者從能耗的角度出發(fā),提出以最高能量效率為優(yōu)化目標的軌跡規(guī)劃算法,進行軌跡和速度規(guī)劃。清華大學[17]的研究者提出了計算受試車輛的加速度變化給出舒適性指標的評估方法。

三、無人車的控制

智能汽車的無人化使得車輛在融合自身狀態(tài)、路面交通等信息的基礎上,在滿足橫向穩(wěn)定性的前提下實現(xiàn)運行軌跡跟蹤的自動控制。其中,軌跡跟隨控制主要是研究如何通過控制車輛的轉向系統(tǒng)以及制動/ 驅動系統(tǒng)使得車輛能夠以期望的速度沿著期望的路線行駛, 從而實現(xiàn)車輛的無人駕駛操作。

1.車輛軌跡跟蹤控制

考慮到很難建立精確的車輛動力學模型、行駛的工況復雜多變,車輛軌跡的精確跟隨控制具有極大的挑戰(zhàn)。目前絕大部分關于軌跡跟隨的研究方法中,從原理上講主要是由預瞄理論和模型預測理論衍生而來。

基于最優(yōu)預瞄控制理論的算法可以分為兩類:

一類是基于預瞄假設以及最優(yōu)曲率控制原則,即駕駛員根據(jù)前方軌跡一點的信息和當前汽車的運動狀態(tài)估計得到的到達該預期點的誤差,計算出一個最優(yōu)的圓弧軌跡,并由軌跡圓弧曲率與轉向盤轉角的對應關系來確定方向盤的轉角輸入[18]。由于使用的是幾何車輛運動模型,而幾何車輛運動模型僅在車速較低的情況下才能比較真實的代表實際的車輛響應,所以該方法只適用于低速工況下的軌跡跟隨控制。

另一類方法是以車輛的動力學模型為基礎,通過建立最優(yōu)的圓弧軌跡與車輛期望的運動學或動力學物理量,然后對其進行反饋跟蹤控制,從而間接實現(xiàn)最優(yōu)的軌跡跟隨控制。合肥工業(yè)大學結合車輛道路相對位置以及車身狀態(tài)信息,設計了期望橫擺加速度生成器[19];吉林大學根據(jù)預瞄—跟隨駕駛員模型理論,對側向和縱向都建立了基于加速度反饋的跟隨控制算法[20]。

與此同時,美國多所高校和企業(yè)合作將這種方法應用于參加DARPA 挑戰(zhàn)賽的無人駕駛汽車的上層控制中[21],無論是在車速較高的行駛工況還是在道路環(huán)境比較復雜場景中,都能夠取得比較好的控制效果。

2.車輛縱向節(jié)能控制

相比較于傳統(tǒng)車輛,無人駕駛智能車在縱向運動過程中通過節(jié)能優(yōu)化能夠有效降低汽車能源消耗。一方面從速度規(guī)劃的角度來講,通過一定的優(yōu)化策略對車輛駕駛進行決策和綜合優(yōu)化[22-24],可以達到降低能耗的目的,另一方面,可以將車輛的速度和動力傳動控制結合起來以提高整車效率[25-28]。隨著信息獲取程度的不斷加深,車輛縱向節(jié)能控制可以分為三個不同的階段:不考慮道路和交通信息的單車縱向速度控制、考慮道路和交通信息的單車縱向速度控制及基于車—車、車—路通信的多車縱向速度控制。

目前實際應用于汽車上的縱向速度控制系統(tǒng)多數(shù)為沒有考慮道路和交通信息的單車優(yōu)化系統(tǒng)。主要集中于改善發(fā)動機工作點、擋位在線優(yōu)化以及油門和制動踏板操作合理化等[29-31]。傳統(tǒng)的自適應巡航控制系統(tǒng)主要針對的是駕駛舒適性和行駛安全性,沒有考慮車輛行駛的經(jīng)濟性,北京理工大學學者基于車輛行駛經(jīng)濟性,在自適應巡航控制過程中研究車輛加速過程的經(jīng)濟性策略,構建出以發(fā)動機油耗為性能指標的最優(yōu)控制問題[32]。清華大學采設計了以降低油耗為目標的分層式自適應巡航控制器,實驗表明該策略在節(jié)能和跟蹤方面具有很好的效果[33]。

車聯(lián)網(wǎng)和地理信息系統(tǒng)在汽車以及交通系統(tǒng)中的充分應用,使車輛不再是交通系統(tǒng)中的單獨個體,而是與外界車輛和基礎設施有著信息聯(lián)系的具有高度自動化的行駛工具。車輛縱向速度控制從單個車輛軌跡和能量優(yōu)化逐漸擴展到多車縱向速度協(xié)調控制。車輛縱向速度控制如何對智能交通系統(tǒng)的上層調度進行配合,實現(xiàn)車輛縱向速度控制與交通系統(tǒng)智能化的整合與提升,也是當前研究的技術熱點[34,35]。

3.車輛橫向穩(wěn)定性控制

無人駕駛智能車橫向穩(wěn)定性控制是以傳統(tǒng)的車輛穩(wěn)定性控制基礎上提出來,主要通過兩種技術途徑實現(xiàn)。一種是基于轉向的穩(wěn)定性控制系統(tǒng);另外一種是直接橫擺力矩控制, 能夠通過改變左、右兩側車輪的縱向力產(chǎn)生附加的橫擺力矩來控制車輛的穩(wěn)定性。

基于轉向的穩(wěn)定性控制系統(tǒng)主要包括前輪轉向控制、后輪轉向控制以及四輪轉向控制。對于前輪轉向,日韓研究人員基于側向輪胎力反饋提出了主動前輪轉向控制,通過控制側向輪胎力保證了轉彎的穩(wěn)定性并能很精確的預測車輛的狀態(tài)[36];我國學者將主動前輪轉向控制和直接橫擺力矩控制結合起來,構成了底盤集成控制系統(tǒng)[37]。

直接橫擺力矩控制主要通過控制內側和外側車輪的縱向力矩分配來控制車輛的橫擺力矩,進而提高車輛的穩(wěn)定性。歐美學者應用模型預測控制理論對主動前輪轉向及差動制動的協(xié)調控制進行了研究[38];日韓學者采用動態(tài)逆的方法對集成控制進行了研究[39]。為了提高車輛的橫擺穩(wěn)定性,增益可調的 LPV 控制律被用來設計集成控制器,并基于 LMI 框架對控制器進行了分析[40]。吉林大學提出了一種基于模型預測控制、采用分層集成控制結構的控制算法,并研究了基于二次規(guī)劃的驅動力分配方法[41]。

三、國內外發(fā)展比較

國內無人駕駛技術的發(fā)展呈現(xiàn)百花齊放、百家爭鳴的態(tài)勢,在一些方面取得了全球領先的進展。由國家自然基金委員會資助,自 2009 年起每年舉辦的“中國無人智能車未來挑戰(zhàn)賽”是目前國際上持續(xù)時間最長的無人車比賽,吸引了來自眾多國內高校及研究所參賽,極大地推動了國內無人車技術的發(fā)展。2016 年,清華大學、西安交通大學和中國科學院自動化研究聯(lián)合推出了新的無人車智能測試理論、評價系統(tǒng)和量化評估方法,在2016 年和 2017 年的“中國無人智能車未來挑戰(zhàn)賽”取得了成功應用[17]。

目前,傳統(tǒng)車廠基本都采用分解式設計,從環(huán)境感知,決策和控制三方面分別研發(fā)無人車的算法實現(xiàn)。而一些新興互聯(lián)網(wǎng)企業(yè)開始采用端對端式來實現(xiàn)無人車,接受輸入感知的圖像等信息直接輸出控制命令。而無論是哪種方式都越來越多地借助深度學習技術。國內的無人車研發(fā)機構和創(chuàng)業(yè)公司在這兩方面都展開了研究。

但整體來看,無論是實驗行駛距離還是人工干預程度,國內的無人駕駛技術相較國外依然存在差距,特別是國內的相關硬件研發(fā)明顯滯后于國外,專用的計算芯片和一些特定傳感器的研發(fā)尚待奮起直追。

四、我國發(fā)展趨勢與對策

雖然目前無人車產(chǎn)業(yè)化仍存在各種問題,但市場對于汽車主動安全技術、智能化技術的持續(xù)增長的需求,推動了無人駕駛技術由輔助駕駛逐步向完全無人化演進。當前,國內外對于無人車前景普遍表示樂觀。

我國無人車借此東風,正在如火如荼地發(fā)展中,眾多新興無人車創(chuàng)業(yè)公司如雨后春筍般成立起來。但可以預見的是,無人車的研發(fā)到應用的過程可能會持續(xù)相當長的時間,需要大量人才和資金的投入。希望在人工智能大潮的背景下,各大高校向無人車領域適當關注,引領更多學子投入相關研究,為無人車的發(fā)展做好人才儲備。

在可預期的未來,隨著傳感器技術及計算機技術的發(fā)展,無人駕駛汽車使用的各種傳感器(如激光雷達等)在性能上將會取得很大提升,價格也將大幅降低,滿足一般消費者的承受能力 , 這將會進一步地推動無人駕駛車的市場化。

五、結束語

本報告圍繞無人車的環(huán)境感知、決策和控制三個主要方面,介紹國內主要研究進展,分析國際學科發(fā)展趨勢及國內的研究特色與差距??偨Y起來,國內學者在無人駕駛研究上取得了一批國際水平的成果,但在以后的工作中還需要更加深入推進相關理論和技術的研發(fā),并積極推進相關人才培養(yǎng)。

參考文獻

[1] SAE International Standard J3016,2016.

[2] Cheng M,Zhang G,Mitra N,et al. Global Contrast based Salient Region Detection[C].IEEE Conference on Computer Vision and Pattern Recognition. IEEE Computer Society,2011,409-416.

[3] Alvarez J,Lopez A. Road Detection based on Illuminant Invariance[J].IEEE Transactions on Intelligent Transportation Systems,2011,12(1):184-193.

[4] Guo C,Mita S,McAllester D. Robust Road Detection and Tracking in Challenging Scenarios based on Markov Random Fields with Unsupervised Learning[J].IEEE Transactions on intelligent transportation systems,2012, 13(3):1338-1354.

[5] Lu X,Wang Y,Zhou X,et al. Traffic Sign Recognition via Multi-Modal Tree-Structure Embedded Multi-Task Learning[J].IEEE Transactions on Intelligent Transportation Systems,2017,18(4):960-972.

[6] Hu W,Zhuo Q,Zhang C,et al. Fast Branch Convolutional Neural Network for Traffic Sign Recognition[J]. IEEE Intelligent Transportation SystemsMagazine,2017,9(3):114-126.

[7] Zeng Y,Xu X,Shen D,et al. Traffic Sign Recognition Using Kernel Extreme Learning Machines With Deep Perceptual Features[J].IEEE Transactions on Intelligent Transportation Systems,2017,18(6):1647-1653.

[8] 張慧,王坤峰,王飛躍 . 深度學習在目標視覺檢測中的應用進展與展望[J].自動化學報,2017,43(8): 1289-1305.

[9] 管皓,薛向陽,安志勇 . 深度學習在視頻目標跟蹤中的應用進展與展望[J].自動化學報,2016,42(6): 834-847.

[10] Gao S,Han Z,Li C,et al. Real-time Multipedestrian Tracking in Traffic Scenes via an RGB-D-based Layered Graph Model[J].IEEE Transactions on Intelligent Transportation Systems,2015,16(5):2814-2825.

[11] Tian Y,Luo P,Wang X,et al. Deep Learning Strong Parts for Pedestrian Detection[C].Proceedings of the IEEE international conference on computer vision. 2015,1904-1912.

[12] Yao H,Zhang S,Zhang Y,et al. Deep Representation Learning with Part Loss for Person Re-identification[J]. arXiv preprint arXiv:1707.00798,2017.

[13] Liu W,Li Z,Li L,et al. Parking Like a Human:A Direct Trajectory Planning Solution[J].IEEE Transactions

onIntelligentTransportation Systems,2017(. Inpublishing).

[14] Zhang X,Yang Y,Guo K,et al. Contour Line of Load Transfer Ratio for Vehicle Rollover Prediction[J]. Vehicle System Dynamics,2017,DOI:10.1080/00423114.2017.1321773.

[15] Li X,Sun Z,Cao D,et al. Real-Time Trajectory Planning for Autonomous Urban Driving:Framework, Algorithms,and Verifications[J].IEEE/ASME Transactions on Mechatronics,2016,21(2):740-753.

[16] Liu S,Sun D. Optimal Motion Planning of a Mobile Robot with Minimum Energy Consumption[C].2011 IEEE/ ASME International Conference on Advanced Intelligent Mechatronics(AIM). 2011,43-48.

[17] Li L,Huang W,Liu Y,et al. Intelligence Testing for Autonomous Vehicles:A New Approach[J].IEEE Transactions on Intelligent Vehicles,2016,1(2):158-166.

[18] Ding H,GuoK,Wan F etal.AnAnalyticalDriverModelforArbitrary Path Following atVaryingVehicleSpeed[J]. International Journal of Vehicle Autonomous Systems,2007,5(3-4):204-218.

[19] 王家恩,陳無畏,王檀彬,等 . 基于期望橫擺角速度的視覺導航智能車輛橫向控制[J].機械工程學報, 2012,48(4):108-115.

[20] 丁海濤,郭孔輝,李飛,等. 基于加速度反饋的任意道路和車速跟隨控制駕駛員模型[J].機械工程學報,2010,46(10):116-120.

[21] Levinson J,Askeland J,Becker J,et al. Towards Fully Autonomous Driving:Systems and Algorithms[C]// Intelligent Vehicles Symposium(IV),2011 IEEE. IEEE,2011:163-168.

[22] Ferguson D,Dolgov D. Modifying speed of an autonomous vehicle based on traffic conditions[P].U.S. Patent 9, 381,918,2016-7-5.

[23] Milanés V,Shladover S,Spring J,et al. Cooperative Adaptive Cruise Control in Real Traffic Situations[J]. IEEE Transactions on Intelligent Transportation Systems,2014,15(1):296-305.

[24] Moser D,Schmied R,Waschl H,et al. Flexible Spacing Adaptive Cruise Control Using Stochastic Modeling Predictive Control[J].IEEE Transaction on Control System Technology,2017,DOI:10.1109/ TCST.2017.2658193.

[25] Liu T,Hu X,Li S,et al. Reinforcement Learning Optimized Look-Ahead Energy Management of a Parallel Hybrid Electric Vehicle[J].IEEE/ASME Transactions on mechatronics,2017,22(4):1497-1507.

[26] Huang D,Xie H,Ma H,et al. Driving Cycle Prediction Model based on Bus Route Features[J].Transportation Research Part D,2017,54:99-113.

[27] Li L,Yang C,Yan B,et al. Driving-behavior-aware Stochastic Model Predictive Control for Plug-in Hybrid Electric Buses[J].Applied Energy,2016,162:868-879.

[28] Yang C,Li L,You S,et al. Cloud Computing-based Energy Optimization Control Framework for Plug-in Hybrid Electric Bus[J].Energy,2017,125:11-26.

[29] Qin H,Long S,Yu K. Simulation Research on the Shift Schedule in the Auto with Automated Manual Transmission based on Cruise Gear Shift Program[J].Advanced Mater Res.,2013,712:2160-2163.

[30] Hofman T,DaiC.Energyefficiencyanalysisandcomparisonoftransmissiontechnologiesforanelectricvehicle[C]// Proceedings of IEEE Vehicle Power and Propulsion Conference(VPPC),Lille,2010:1-6.

[31] Mashadi B,Kazemkhani A,Lakeh R. An automatic gear-shifting strategy for manual transmissions[J].Proc Inst Mech Eng Part I:J Syst Control Eng,2007,221:757-768.

[32] 何瑋 . 汽車智能巡航技術發(fā)展綜述[J].北京汽車,2006,3:36-39.

[33] Li S,Li K,Wang J. Economy-oriented Vehicle Adaptive Cruise Control with Coordinating Multiple Objectives Function[J].International Journal of Vehicle Mechanics and Mobility,2013,51(1):1-17

[34] 王***,宋鵬飛,張?zhí)N靈 . 智能交通系統(tǒng)發(fā)展與展望[J].公路,2012,5(5):217-222.

[35] 李清泉,熊煒,李宇光 . 智能道路系統(tǒng)的體系框架及其關鍵技術研究[J].交通運輸系統(tǒng)工程與信息, 2007,8(1):40-48.

[36] Nam K,F(xiàn)ujimoto H,Hori Y. Advanced Motion Control of Electric Vehicles based on Robust Lateral Tire Force Control via Active Front Steering[J].Mechatronics,IEEE/ASME Transactions on,2014,19(1):289-299.

[37] Zhang H and Wang J. Vehicle Lateral Dynamics Control Through AFS/DYC and Robust Gain-Scheduling Approach

[J].IEEE Transactions on Vehicular Technology,2016,65(1):489-494.

[38] Di C,Tseng H,Bernardini D. Vehicle Yaw Stability Control by Coordinated Active Front Steering and Differential Brakinginthe Tire SideslipAnglesDomain[J].IEEE Transactions onControl Systems Technology,2013,21(4): 1236-1248.

[39] Yang I,Byun S,Seo B. Integrated control systems of active front steering and direct yaw moment control using dynamic inversion[C]// 2013 IEEE Intelligent Vehicles Symposium. Gold Coast:IEEE,2013:1303-1306.

[40] Doumiati M,Sename O,Dugard L. Integrated Vehicle Dynamics Control via Coordination of Active Front Steering and Rear Braking[J].European Journal of Control,2013,19(2):121-143.

[41] Ren B,Chen H,Zhao H,et al. MPC-based yaw stability control in in-wheel-motored EV via active front steering and motor torque distribution[J].Mechatronics,2016,38:103-114.

聲明:本文內容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權轉載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學習之用,如有內容侵權或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • adas
    +關注

    關注

    309

    文章

    2196

    瀏覽量

    208883
  • 無人車
    +關注

    關注

    1

    文章

    304

    瀏覽量

    36576

原文標題:深度 | 全面解析2018無人車研究報告

文章出處:【微信號:IV_Technology,微信公眾號:智車科技】歡迎添加關注!文章轉載請注明出處。

收藏 人收藏

    評論

    相關推薦

    焊接電壓波動分析儀的應用與研究進展

    焊縫成型不良、熔深不足等問題,還可能引發(fā)焊接缺陷,如氣孔、裂紋等,嚴重影響產(chǎn)品的質量和安全性能。因此,對焊接電壓波動的監(jiān)測與控制成為焊接技術領域的一個重要研究方向。
    的頭像 發(fā)表于 01-15 14:09 ?109次閱讀

    高能點焊電源技術在現(xiàn)代工業(yè)制造中的應用與研究進展

    制造中的最新研究進展。 一、高能點焊電源技術的基本原理及特點 高能點焊電源技術是一種利用高壓脈沖電流實現(xiàn)金屬材料瞬間熔化并完成焊接的先進工藝。其工作原理主要基于
    的頭像 發(fā)表于 11-23 08:58 ?240次閱讀
    高能點焊電源技術在現(xiàn)代工業(yè)制造中的應用與<b class='flag-5'>研究進展</b>

    從發(fā)展歷史、研究進展和前景預測三個方面對混合鍵合(HB)技術進行分析

    、無凸點的永久鍵合。闡述了HB 技術的發(fā)展歷史、研究進展并預測了發(fā)展前景。目前HB 技術的焊盤直徑/節(jié)距已達到0.75 μm /1. 5 μm,熱門研究方向包括銅凹陷、圓片翹曲、鍵合精度及現(xiàn)有設備兼容等,未來將突破更小的焊盤直徑/節(jié)距。HB 技術將對后摩爾時代封裝技術的發(fā)
    的頭像 發(fā)表于 11-22 11:14 ?1568次閱讀
    從發(fā)展歷史、<b class='flag-5'>研究進展</b>和前景預測三個方面對混合鍵合(HB)技術進行<b class='flag-5'>分析</b>

    上海光機所在多路超短脈沖時空同步測量方面取得研究進展

    圖1.超短脈沖時空同步實驗的光路圖 近日,中科院上海光機所高功率激光物理聯(lián)合實驗室在多路超短脈沖時間同步與空間疊合度測量方面取得研究進展,相關研究成果以“High-precision
    的頭像 發(fā)表于 11-11 06:25 ?237次閱讀
    上海光機所在多路超短脈沖時空同步測量方面取得<b class='flag-5'>研究進展</b>

    高光譜成像技術在生物物證領域研究進展2.0

    目前高光譜成像技術主要應用于食品安全、醫(yī)學診斷、航天等領域,在生物物證領域涉足較少,相關生物物證的檢驗與鑒定還處于空白,伴隨著高光譜成像技術不斷創(chuàng)新與發(fā)展,未來將可在生物物證領域展現(xiàn)出
    的頭像 發(fā)表于 10-30 18:29 ?257次閱讀
    高光譜成像技術在生物物證<b class='flag-5'>領域</b>的<b class='flag-5'>研究進展</b>2.0

    AI大模型的最新研究進展

    AI大模型的最新研究進展體現(xiàn)在多個方面,以下是對其最新進展的介紹: 一、技術創(chuàng)新與突破 生成式AI技術的爆發(fā) : 生成式AI技術正在迅速發(fā)展,其強大的生成能力使得AI大模型在多個領域得到廣泛應用
    的頭像 發(fā)表于 10-23 15:19 ?661次閱讀

    基于無人機遙感的作物長勢監(jiān)測研究進展

    無人機遙感技術通過對作物生長過程中的環(huán)境因素、物理指標和生化參數(shù)等進行實時或定期監(jiān)測,來評估和預測作物的生長情況和生產(chǎn)潛力,指導農業(yè)生產(chǎn)和管理決策,不僅優(yōu)化了作物生長環(huán)境和生產(chǎn)方式,且提高了作物
    的頭像 發(fā)表于 07-12 14:14 ?865次閱讀
    基于<b class='flag-5'>無人</b>機遙感的作物長勢監(jiān)測<b class='flag-5'>研究進展</b>

    導熱紙(膜)的研究進展 | 晟鵬技術突破導熱芳綸紙

    問題。紙張及薄膜具有良好的柔韌性、優(yōu)異的加工性和厚度可調整性,是良好的柔性導熱材料。本文概述了近年來導熱紙(膜)的研究進展,對不同基材的導熱紙進行了歸納分類和介紹,重點
    的頭像 發(fā)表于 07-12 08:10 ?863次閱讀
    導熱紙(膜)的<b class='flag-5'>研究進展</b> | 晟鵬技術突破導熱芳綸紙

    AMR叉車在桶轉運領域的應用與前景分析

    隨著制造業(yè)的快速發(fā)展,自動化生產(chǎn)線的應用越來越廣泛。在桶轉運領域,富唯智能高精度AMR叉車的引入,為生產(chǎn)線帶來了革命性的改進。本文將對AMR叉車在桶轉運領域的應用和前景進行深入
    的頭像 發(fā)表于 06-12 17:01 ?376次閱讀
    AMR叉車在桶<b class='flag-5'>車</b>轉運<b class='flag-5'>領域</b>的應用與前景<b class='flag-5'>分析</b>

    量子計算+光伏!本源研究成果入選2023年度“中國地理科學十大研究進展

    近日中國地理學會公布了2023年度“中國地理科學十大研究進展”本源量子參與的“量子地理計算技術、軟件及應用”研究成果獲選系量子計算領域唯一入選單位來源:中國地理學會此次入選的“量子地理計算技術、軟件
    的頭像 發(fā)表于 05-10 08:22 ?565次閱讀
    量子計算+光伏!本源<b class='flag-5'>研究</b>成果入選2023年度“中國地理科學十大<b class='flag-5'>研究進展</b>”

    用于先進電生理記錄的有源微納協(xié)同生物電子器件研究進展綜述

    開發(fā)精確靈敏的電生理記錄平臺對心臟病學和神經(jīng)科學領域研究至關重要。近年來,有源微納生物電子器件取得了重大進展,從而促進了電生理學的研究。
    的頭像 發(fā)表于 04-16 10:55 ?805次閱讀
    用于先進電生理記錄的有源微納協(xié)同生物電子器件<b class='flag-5'>研究進展</b>綜述

    綜述:高性能銻化物中紅外半導體激光器研究進展

    據(jù)麥姆斯咨詢報道,近期,由中國科學院半導體研究所和中國科學院大學組成的科研團隊受邀在《激光技術》期刊上發(fā)表了以“高性能銻化物中紅外半導體激光器研究進展”為主題的文章。該文章第一作者為曹鈞天,通訊作者為楊成奧和牛智川研究員。
    的頭像 發(fā)表于 04-13 12:08 ?2137次閱讀
    綜述:高性能銻化物中紅外半導體激光器<b class='flag-5'>研究進展</b>

    先進封裝中銅-銅低溫鍵合技術研究進展

    用于先進封裝領域的 Cu-Cu 低溫鍵合技術進行了綜述,首先從工藝流程、連接機理、性能表征等方面較系統(tǒng)地總結了熱壓工藝、混合鍵合工藝實現(xiàn) Cu-Cu 低溫鍵合的研究進展與存在問題,進一步地闡述了新型納米材料燒結工藝在實現(xiàn)低溫連接、降低工藝要求方面的優(yōu)
    的頭像 發(fā)表于 03-25 08:39 ?895次閱讀
    先進封裝中銅-銅低溫鍵合技術<b class='flag-5'>研究進展</b>

    第三集 知語云智能科技無人機反制技術與應用--無人機的應用領域

    無人機反制技術應運而生。今天,就讓我們一起走進知語云智能科技,探索無人機反制技術與應用的世界。 一、無人機應用領域的廣泛性 在民用領域
    發(fā)表于 03-12 11:13

    無人機全景監(jiān)測:空域管理的新革命

    隨著科技的飛速發(fā)展,無人機技術已成為現(xiàn)代空域管理領域的一股新興力量。無人機全景監(jiān)測以其高效、精準的特點,正逐漸成為提升空域管理效率的關鍵。知語云智能科技在這一領域的前瞻性
    發(fā)表于 02-20 15:23