欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

神經(jīng)網(wǎng)絡(luò)運(yùn)用領(lǐng)域

工程師 ? 來(lái)源:未知 ? 作者:姚遠(yuǎn)香 ? 2018-11-24 09:28 ? 次閱讀

1.圖像和物體識(shí)別

機(jī)器在圖像和物體識(shí)別方面有很好的記錄。GeoffHinton發(fā)明的膠囊網(wǎng)絡(luò)幾乎減少了以前的最佳錯(cuò)誤率,這個(gè)測(cè)試挑戰(zhàn)軟件識(shí)別玩具。即使視圖與之前分析的視圖不同,在各種掃描中使用增加量的這些膠囊也允許系統(tǒng)更好地識(shí)別物體。

另一個(gè)例子來(lái)自一個(gè)最先進(jìn)的網(wǎng)絡(luò),該網(wǎng)絡(luò)經(jīng)過(guò)標(biāo)記圖像數(shù)據(jù)庫(kù)的訓(xùn)練,能夠比相同任務(wù)訓(xùn)練100小時(shí)的博士更好地分類(lèi)對(duì)象。

2.電子游戲

Google的DeepMind使用深度學(xué)習(xí)技術(shù),被稱(chēng)為深度強(qiáng)化學(xué)習(xí)。研究人員用這種方法教計(jì)算機(jī)玩Atari游戲Breakout。電腦沒(méi)有以任何特定的方式教授或編程玩游戲。相反,它在觀看比分時(shí)被賦予了鍵盤(pán)的控制權(quán),其目標(biāo)是最大化得分。玩了兩個(gè)小時(shí)后,電腦成了游戲的專(zhuān)家。

深度學(xué)習(xí)社區(qū)正在進(jìn)行一場(chǎng)比賽,訓(xùn)練計(jì)算機(jī)在幾乎所有你能想到的游戲中擊敗人類(lèi),包括太空侵略者,毀滅戰(zhàn)士,乒乓球和魔獸世界。在大多數(shù)這些游戲中,深度學(xué)習(xí)網(wǎng)絡(luò)已經(jīng)勝過(guò)有經(jīng)驗(yàn)的玩家。電腦沒(méi)有編程玩游戲;他們只是通過(guò)玩耍學(xué)習(xí)。

3.語(yǔ)音生成和識(shí)別

Google發(fā)布了WaveNet,百度發(fā)布了DeepSpeech。兩者都是自動(dòng)生成語(yǔ)音的深度學(xué)習(xí)網(wǎng)絡(luò)。系統(tǒng)學(xué)會(huì)自己模仿人類(lèi)的聲音,并隨著時(shí)間的推移而改善。將他們的言論與真實(shí)的人物區(qū)別開(kāi)來(lái),這要比想像中難得多。

由牛津大學(xué)和GoogleDeepMind科學(xué)家LipNet創(chuàng)建的一個(gè)深度網(wǎng)絡(luò),在閱讀人們的嘴唇方面達(dá)到了93%的成功,普通的人類(lèi)嘴唇閱讀器只有52%的成功率。華盛頓大學(xué)的一個(gè)小組使用唇形同步來(lái)創(chuàng)建一個(gè)系統(tǒng),將合成音頻設(shè)置為現(xiàn)有視頻。

4.藝術(shù)和風(fēng)格的模仿

神經(jīng)網(wǎng)絡(luò)可以研究特定藝術(shù)品的筆畫(huà),顏色和陰影中的圖案。在此基礎(chǔ)上,可以將原作的風(fēng)格轉(zhuǎn)化為新的形象。

DeepArt.io就是一個(gè)例子,該公司創(chuàng)建的應(yīng)用程序使用深度學(xué)習(xí)來(lái)學(xué)習(xí)數(shù)百種不同的風(fēng)格,可以將其應(yīng)用于照片。藝術(shù)家和程序員GeneKogan還根據(jù)從埃及象形文字中學(xué)到的算法樣式,應(yīng)用風(fēng)格轉(zhuǎn)換來(lái)修改蒙娜麗莎。

5.預(yù)測(cè)

斯坦福大學(xué)研究人員蒂姆尼特·格布魯拿走了五千萬(wàn)張谷歌街景圖片,探索一個(gè)深度學(xué)習(xí)網(wǎng)絡(luò)可以做些什么。計(jì)算機(jī)學(xué)會(huì)了本地化和識(shí)別汽車(chē)。它檢測(cè)到超過(guò)2200萬(wàn)輛汽車(chē),包括他們的制造商,型號(hào),車(chē)型和年份。這個(gè)系統(tǒng)應(yīng)用的一個(gè)例子包括了選民路線開(kāi)始和停止的跡象。根據(jù)分析,“如果在15分鐘車(chē)程內(nèi)遇到的轎車(chē)數(shù)量超過(guò)皮卡車(chē)數(shù)量,那么在下次總統(tǒng)選舉期間,這個(gè)城市很可能會(huì)投票給民主黨人(88%的概率)。

來(lái)自GoogleSunroof的機(jī)器的另一個(gè)例子比人類(lèi)提供更準(zhǔn)確的預(yù)測(cè)。該技術(shù)使用來(lái)自GoogleEarth的航空照片創(chuàng)建屋頂?shù)?D模型,將其與周?chē)臉?shù)木和陰影區(qū)分開(kāi)來(lái)。然后使用太陽(yáng)的軌跡來(lái)預(yù)測(cè)太陽(yáng)能電池板根據(jù)位置規(guī)格可以從屋頂產(chǎn)生多少能量。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    卷積神經(jīng)網(wǎng)絡(luò)與傳統(tǒng)神經(jīng)網(wǎng)絡(luò)的比較

    在深度學(xué)習(xí)領(lǐng)域,神經(jīng)網(wǎng)絡(luò)模型被廣泛應(yīng)用于各種任務(wù),如圖像識(shí)別、自然語(yǔ)言處理和游戲智能等。其中,卷積神經(jīng)網(wǎng)絡(luò)(CNNs)和傳統(tǒng)神經(jīng)網(wǎng)絡(luò)是兩種常見(jiàn)的模型。 1. 結(jié)構(gòu)差異 1.1 傳統(tǒng)
    的頭像 發(fā)表于 11-15 14:53 ?790次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)有何用途 卷積神經(jīng)網(wǎng)絡(luò)通常運(yùn)用在哪里

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks,簡(jiǎn)稱(chēng)CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、視頻分析、自然語(yǔ)言處理、生物信息學(xué)等領(lǐng)域。本文將介紹卷積神經(jīng)網(wǎng)絡(luò)的用途
    的頭像 發(fā)表于 07-11 14:43 ?2723次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的關(guān)系

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱(chēng)CNN)是兩種在人工智能和機(jī)器學(xué)習(xí)領(lǐng)域
    的頭像 發(fā)表于 07-10 15:24 ?1751次閱讀

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)的區(qū)別

    BP神經(jīng)網(wǎng)絡(luò)和人工神經(jīng)網(wǎng)絡(luò)(Artificial Neural Networks,簡(jiǎn)稱(chēng)ANNs)之間的關(guān)系與區(qū)別,是神經(jīng)網(wǎng)絡(luò)領(lǐng)域中一個(gè)基礎(chǔ)且重要的話題。本文將從定義、結(jié)構(gòu)、算法、應(yīng)用及
    的頭像 發(fā)表于 07-10 15:20 ?1330次閱讀

    rnn是遞歸神經(jīng)網(wǎng)絡(luò)還是循環(huán)神經(jīng)網(wǎng)絡(luò)

    RNN(Recurrent Neural Network)是循環(huán)神經(jīng)網(wǎng)絡(luò),而非遞歸神經(jīng)網(wǎng)絡(luò)。循環(huán)神經(jīng)網(wǎng)絡(luò)是一種具有時(shí)間序列特性的神經(jīng)網(wǎng)絡(luò),能夠處理序列數(shù)據(jù),具有記憶功能。以下是關(guān)于循環(huán)
    的頭像 發(fā)表于 07-05 09:52 ?667次閱讀

    遞歸神經(jīng)網(wǎng)絡(luò)是循環(huán)神經(jīng)網(wǎng)絡(luò)

    遞歸神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡(jiǎn)稱(chēng)RNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,簡(jiǎn)稱(chēng)RNN)實(shí)際上是同一個(gè)概念,只是不同的翻譯方式
    的頭像 發(fā)表于 07-04 14:54 ?897次閱讀

    循環(huán)神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)的區(qū)別

    循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Network,RNN)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,CNN)是深度學(xué)習(xí)領(lǐng)域中兩種非常重要的神經(jīng)網(wǎng)絡(luò)
    的頭像 發(fā)表于 07-04 14:24 ?1523次閱讀

    深度神經(jīng)網(wǎng)絡(luò)與基本神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在探討深度神經(jīng)網(wǎng)絡(luò)(Deep Neural Networks, DNNs)與基本神經(jīng)網(wǎng)絡(luò)(通常指?jìng)鹘y(tǒng)神經(jīng)網(wǎng)絡(luò)或前向神經(jīng)網(wǎng)絡(luò))的區(qū)別時(shí),我們需要從多個(gè)維度進(jìn)行深入分析。這些維度包括
    的頭像 發(fā)表于 07-04 13:20 ?1071次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)與循環(huán)神經(jīng)網(wǎng)絡(luò)的區(qū)別

    在深度學(xué)習(xí)領(lǐng)域,卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Networks, CNN)和循環(huán)神經(jīng)網(wǎng)絡(luò)(Recurrent Neural Networks, RNN)是兩種極其重要
    的頭像 發(fā)表于 07-03 16:12 ?3749次閱讀

    反向傳播神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    神經(jīng)網(wǎng)絡(luò)在許多領(lǐng)域都有廣泛的應(yīng)用,如語(yǔ)音識(shí)別、圖像識(shí)別、自然語(yǔ)言處理等。然而,BP神經(jīng)網(wǎng)絡(luò)也存在一些問(wèn)題,如容易陷入局部最優(yōu)解、訓(xùn)練時(shí)間長(zhǎng)、對(duì)初始權(quán)重敏感等。為了解決這些問(wèn)題,研究者們提出了一些改進(jìn)的BP
    的頭像 發(fā)表于 07-03 11:00 ?877次閱讀

    bp神經(jīng)網(wǎng)絡(luò)和卷積神經(jīng)網(wǎng)絡(luò)區(qū)別是什么

    BP神經(jīng)網(wǎng)絡(luò)(Backpropagation Neural Network)和卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱(chēng)CNN)是兩種不同類(lèi)型的人工神經(jīng)網(wǎng)絡(luò),它們?cè)?/div>
    的頭像 發(fā)表于 07-03 10:12 ?1387次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)的原理是什么

    卷積神經(jīng)網(wǎng)絡(luò)(Convolutional Neural Network,簡(jiǎn)稱(chēng)CNN)是一種深度學(xué)習(xí)模型,廣泛應(yīng)用于圖像識(shí)別、語(yǔ)音識(shí)別、自然語(yǔ)言處理等領(lǐng)域。本文將詳細(xì)介紹卷積神經(jīng)網(wǎng)絡(luò)的原理,包括其
    的頭像 發(fā)表于 07-02 14:44 ?825次閱讀

    卷積神經(jīng)網(wǎng)絡(luò)和bp神經(jīng)網(wǎng)絡(luò)的區(qū)別

    化能力。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,神經(jīng)網(wǎng)絡(luò)已經(jīng)成為人工智能領(lǐng)域的重要技術(shù)之一。卷積神經(jīng)網(wǎng)絡(luò)和BP神經(jīng)
    的頭像 發(fā)表于 07-02 14:24 ?4773次閱讀

    神經(jīng)網(wǎng)絡(luò)模型的原理、類(lèi)型及應(yīng)用領(lǐng)域

    數(shù)學(xué)建模神經(jīng)網(wǎng)絡(luò)模型是一種基于人工神經(jīng)網(wǎng)絡(luò)的數(shù)學(xué)建模方法,它通過(guò)模擬人腦神經(jīng)元的工作機(jī)制,實(shí)現(xiàn)對(duì)復(fù)雜問(wèn)題的建模和求解。神經(jīng)網(wǎng)絡(luò)模型具有自學(xué)習(xí)能力、泛化能力強(qiáng)、適應(yīng)性強(qiáng)等優(yōu)點(diǎn),因此在許多
    的頭像 發(fā)表于 07-02 11:31 ?1387次閱讀

    神經(jīng)網(wǎng)絡(luò)架構(gòu)有哪些

    神經(jīng)網(wǎng)絡(luò)架構(gòu)是機(jī)器學(xué)習(xí)領(lǐng)域中的核心組成部分,它們模仿了生物神經(jīng)網(wǎng)絡(luò)的運(yùn)作方式,通過(guò)復(fù)雜的網(wǎng)絡(luò)結(jié)構(gòu)實(shí)現(xiàn)信息的處理、存儲(chǔ)和傳遞。隨著深度學(xué)習(xí)技術(shù)的不斷發(fā)展,各種
    的頭像 發(fā)表于 07-01 14:16 ?880次閱讀