欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

盤點(diǎn)2018年計(jì)算機(jī)視覺領(lǐng)域技術(shù)突破

張康康 ? 2019-07-29 18:27 ? 次閱讀

回顧2018年,是屬于人工智能的一年,不論是Google、Facebook、Intel、阿里巴巴等通過(guò)產(chǎn)業(yè)布局進(jìn)入人工智能領(lǐng)域的互聯(lián)網(wǎng)企業(yè),亦或如曠視科技Face++、極鏈科技Video++、優(yōu)必選科技這樣直接以人工智能起家的原生技術(shù)企業(yè),都將AI注入到每個(gè)角落,掀起了一輪又一輪的技術(shù)高潮。

因而,除了NLP研究突破接連不斷,CV領(lǐng)域同樣精彩紛呈,伴隨著各式各樣落地應(yīng)用如此接近人們的生活,技術(shù)也變得越發(fā)成熟。本文整理了在2018年,在CV技術(shù)領(lǐng)域取得的最主要的一些重大技術(shù)突破。


BigGAN發(fā)布

Ian Goodfellow在2014年設(shè)計(jì)了GAN,在之后的幾年中,圍繞這個(gè)概念產(chǎn)生了多種多樣的應(yīng)用程序。

其中,在ICLR 2019論文中出現(xiàn)的BigGAN,同樣是一個(gè)GAN,只不過(guò)更強(qiáng)大,是擁有了更聰明的課程學(xué)習(xí)技巧的GAN,由它訓(xùn)練生成的圖像連它自己都分辨不出真假,因?yàn)槌悄蔑@微鏡看,否則將無(wú)法判斷該圖像是否有任何問題,因而,它更被譽(yù)為史上最強(qiáng)的圖像生成器。


在計(jì)算機(jī)圖像研究史上,BigGAN帶來(lái)的突破是劃時(shí)代的,比如在ImageNet上進(jìn)行128×128分辨率的訓(xùn)練后,它的IS得分能達(dá)到166.3,是之前最佳得分52.52分3倍;除了搞定128×128小圖之外,BigGAN還能直接在256×256、512×512的ImageNet數(shù)據(jù)上訓(xùn)練,生成更讓人信服的樣本。

英偉達(dá)Video-to-Video Synthesis

英偉達(dá)在2018年的收獲頗豐,他們的研究焦點(diǎn)從標(biāo)準(zhǔn)的監(jiān)督學(xué)習(xí)轉(zhuǎn)向更具挑戰(zhàn)性的機(jī)器學(xué)習(xí),如半監(jiān)督學(xué)習(xí),領(lǐng)域適應(yīng),主動(dòng)學(xué)習(xí)和生成模型等。其中,由英偉達(dá)在2018年末發(fā)布的最大成果之一便是視頻到視頻生成(Video-to-Video synthesis),它通過(guò)精心設(shè)計(jì)的發(fā)生器、鑒別器網(wǎng)絡(luò)以及時(shí)空對(duì)抗物鏡,合成高分辨率、照片級(jí)真實(shí)、時(shí)間一致的視頻,實(shí)現(xiàn)了讓AI更具物理意識(shí),更強(qiáng)大,并能夠推廣到新的和看不見的更多場(chǎng)景。


因而,Video-to-Video Synthesis也被看作是在過(guò)去幾年中,視頻領(lǐng)域的一次重大突破,畢竟從靜態(tài)框架轉(zhuǎn)換為動(dòng)態(tài)框架的難度是很大的,但機(jī)器訓(xùn)練卻在盡量模擬預(yù)測(cè)視頻將會(huì)發(fā)生的情景,通過(guò)給定的輸入視頻學(xué)習(xí)映射函數(shù),產(chǎn)生仿真度極高的視頻內(nèi)容。

Fast.ai18分鐘訓(xùn)練ImageNet

在普遍認(rèn)知還停留在需要大量計(jì)算資源來(lái)執(zhí)行適當(dāng)?shù)?a target="_blank">深度學(xué)習(xí)任務(wù)時(shí),F(xiàn)ast.ai通過(guò)使用16個(gè)公共AWS云實(shí)例,每個(gè)配備8個(gè)NVIDIA V100 GPU,運(yùn)行fast.ai和PyTorch,用18分鐘在ImageNet上將圖像分類模型訓(xùn)練到了93%的準(zhǔn)確率,刷新了一個(gè)新的速度記錄。


這是一個(gè)令人驚喜的結(jié)果,尤其在公共基礎(chǔ)設(shè)施上訓(xùn)練ImageNet能達(dá)到這種準(zhǔn)確性,并且比其專有TPU Pod群集上的谷歌DAWNBench記錄快40%,運(yùn)行成本僅約為40美元。這意味著一個(gè)關(guān)鍵的里程碑出現(xiàn)了,幾乎所有人都可以在一個(gè)相當(dāng)大的數(shù)據(jù)集上訓(xùn)練大規(guī)模神經(jīng)網(wǎng)絡(luò)。

除了這些重要的節(jié)點(diǎn)之外,2018年的計(jì)算機(jī)視覺技術(shù)也部署更多方面,不論是亞馬遜發(fā)布Rekognition將計(jì)算機(jī)視覺置于開發(fā)人員、微軟為OneDrive和SharePoint推出了新的AI服務(wù)、Google相冊(cè)讓我們的記憶變得可搜索、還是每個(gè)場(chǎng)景下都正在逐漸普及的AI人臉識(shí)別等等,計(jì)算機(jī)視覺正在逐步滲透到我們生活的每個(gè)部分。

最后,最值得注意的是,計(jì)算機(jī)視覺的市場(chǎng)增長(zhǎng)幾乎與其技術(shù)能力的增長(zhǎng)是一樣快的,預(yù)計(jì)到 2025年,計(jì)算機(jī)視覺領(lǐng)域會(huì)帶來(lái)超過(guò)262億美元的收益,因而在人工智能的未來(lái)里,計(jì)算機(jī)視覺一定是最有力的表現(xiàn)形式,并將隨處可見。


聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • AI
    AI
    +關(guān)注

    關(guān)注

    87

    文章

    31711

    瀏覽量

    270511
  • 計(jì)算機(jī)視覺
    +關(guān)注

    關(guān)注

    8

    文章

    1701

    瀏覽量

    46148
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    計(jì)算機(jī)視覺有哪些優(yōu)缺點(diǎn)

    計(jì)算機(jī)視覺作為人工智能領(lǐng)域的一個(gè)重要分支,旨在使計(jì)算機(jī)能夠像人類一樣理解和解釋圖像和視頻中的信息。這一技術(shù)的發(fā)展不僅推動(dòng)了多個(gè)行業(yè)的變革,也
    的頭像 發(fā)表于 08-14 09:49 ?1177次閱讀

    計(jì)算機(jī)視覺技術(shù)的AI算法模型

    計(jì)算機(jī)視覺技術(shù)作為人工智能領(lǐng)域的一個(gè)重要分支,旨在使計(jì)算機(jī)能夠像人類一樣理解和解釋圖像及視頻中的信息。為了實(shí)現(xiàn)這一目標(biāo),
    的頭像 發(fā)表于 07-24 12:46 ?1111次閱讀

    機(jī)器視覺計(jì)算機(jī)視覺有什么區(qū)別

    機(jī)器視覺計(jì)算機(jī)視覺是兩個(gè)密切相關(guān)但又有所區(qū)別的概念。 一、定義 機(jī)器視覺 機(jī)器視覺,又稱為計(jì)算機(jī)
    的頭像 發(fā)表于 07-16 10:23 ?643次閱讀

    計(jì)算機(jī)視覺的五大技術(shù)

    計(jì)算機(jī)視覺作為深度學(xué)習(xí)領(lǐng)域最熱門的研究方向之一,其技術(shù)涵蓋了多個(gè)方面,為人工智能的發(fā)展開拓了廣闊的道路。以下是對(duì)計(jì)算機(jī)
    的頭像 發(fā)表于 07-10 18:26 ?1613次閱讀

    計(jì)算機(jī)視覺與機(jī)器視覺的區(qū)別與聯(lián)系

    隨著人工智能技術(shù)的飛速發(fā)展,計(jì)算機(jī)視覺和機(jī)器視覺作為該領(lǐng)域的兩個(gè)重要分支,逐漸引起了廣泛關(guān)注。盡管兩者在名稱上有所相似,但實(shí)際上它們?cè)诙x、
    的頭像 發(fā)表于 07-10 18:24 ?1727次閱讀

    計(jì)算機(jī)視覺的工作原理和應(yīng)用

    圖像和視頻中提取有用信息,進(jìn)而進(jìn)行決策和行動(dòng)。自1960代第一批學(xué)術(shù)論文問世以來(lái),計(jì)算機(jī)視覺技術(shù)已經(jīng)取得了長(zhǎng)足的發(fā)展,并在多個(gè)領(lǐng)域展現(xiàn)出巨
    的頭像 發(fā)表于 07-10 18:24 ?2329次閱讀

    計(jì)算機(jī)視覺與人工智能的關(guān)系是什么

    引言 計(jì)算機(jī)視覺是一門研究如何使計(jì)算機(jī)能夠理解和解釋視覺信息的學(xué)科。它涉及到圖像處理、模式識(shí)別、機(jī)器學(xué)習(xí)等多個(gè)領(lǐng)域的知識(shí)。人工智能則是研究如
    的頭像 發(fā)表于 07-09 09:25 ?782次閱讀

    計(jì)算機(jī)視覺與智能感知是干嘛的

    感知(Intelligent Perception)則是計(jì)算機(jī)視覺的一個(gè)分支,它強(qiáng)調(diào)計(jì)算機(jī)在處理視覺信息時(shí)的智能性和自適應(yīng)性。 隨著計(jì)算機(jī)技術(shù)
    的頭像 發(fā)表于 07-09 09:23 ?1121次閱讀

    計(jì)算機(jī)視覺和機(jī)器視覺區(qū)別在哪

    ,旨在實(shí)現(xiàn)對(duì)圖像和視頻的自動(dòng)分析和理解。 機(jī)器視覺 機(jī)器視覺計(jì)算機(jī)視覺的一個(gè)分支,主要應(yīng)用于工業(yè)自動(dòng)化領(lǐng)域。它利用
    的頭像 發(fā)表于 07-09 09:22 ?536次閱讀

    計(jì)算機(jī)視覺在人工智能領(lǐng)域有哪些主要應(yīng)用?

    計(jì)算機(jī)視覺是人工智能領(lǐng)域的一個(gè)重要分支,它主要研究如何讓計(jì)算機(jī)能夠像人類一樣理解和處理圖像和視頻數(shù)據(jù)。計(jì)算機(jī)
    的頭像 發(fā)表于 07-09 09:14 ?1687次閱讀

    計(jì)算機(jī)視覺屬于人工智能嗎

    屬于,計(jì)算機(jī)視覺是人工智能領(lǐng)域的一個(gè)重要分支。 引言 計(jì)算機(jī)視覺是一門研究如何使計(jì)算機(jī)具有
    的頭像 發(fā)表于 07-09 09:11 ?1445次閱讀

    深度學(xué)習(xí)在計(jì)算機(jī)視覺領(lǐng)域的應(yīng)用

    隨著人工智能技術(shù)的飛速發(fā)展,深度學(xué)習(xí)作為其中的核心技術(shù)之一,已經(jīng)在計(jì)算機(jī)視覺領(lǐng)域取得了顯著的成果。計(jì)算機(jī)
    的頭像 發(fā)表于 07-01 11:38 ?1005次閱讀

    機(jī)器視覺計(jì)算機(jī)視覺的區(qū)別

    在人工智能和自動(dòng)化技術(shù)的快速發(fā)展中,機(jī)器視覺(Machine Vision, MV)和計(jì)算機(jī)視覺(Computer Vision, CV)作為兩個(gè)重要的分支
    的頭像 發(fā)表于 06-06 17:24 ?1470次閱讀

    計(jì)算機(jī)視覺的主要研究方向

    計(jì)算機(jī)視覺(Computer Vision, CV)作為人工智能領(lǐng)域的一個(gè)重要分支,致力于使計(jì)算機(jī)能夠像人眼一樣理解和解釋圖像和視頻中的信息。隨著深度學(xué)習(xí)、大數(shù)據(jù)等
    的頭像 發(fā)表于 06-06 17:17 ?1152次閱讀

    計(jì)算機(jī)視覺的十大算法

    視覺技術(shù)的發(fā)展起到了重要的推動(dòng)作用。一、圖像分割算法圖像分割算法是計(jì)算機(jī)視覺領(lǐng)域的基礎(chǔ)算法之一,它的主要任務(wù)是將圖像分割成不同的區(qū)域或?qū)ο蟆?/div>
    的頭像 發(fā)表于 02-19 13:26 ?1383次閱讀
    <b class='flag-5'>計(jì)算機(jī)</b><b class='flag-5'>視覺</b>的十大算法