欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫(xiě)文章/發(fā)帖/加入社區(qū)
會(huì)員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

可以克服GAN訓(xùn)練缺點(diǎn)的解決方案介紹

DPVg_AI_era ? 來(lái)源:cc ? 2019-02-13 09:33 ? 次閱讀

生成對(duì)抗網(wǎng)絡(luò)GAN很強(qiáng)大,但也有很多造成GAN難以使用的缺陷。本文介紹了可以克服GAN訓(xùn)練缺點(diǎn)的一些解決方案,有助于提高GAN性能。

生成對(duì)抗網(wǎng)絡(luò) (GAN) 是一類(lèi)功能強(qiáng)大的神經(jīng)網(wǎng)絡(luò),具有廣泛的應(yīng)用前景。GAN 本質(zhì)上是由兩個(gè)神經(jīng)網(wǎng)絡(luò)組成的系統(tǒng)——生成器 (Generator)和鑒別器 (Discriminator)——二者相互競(jìng)爭(zhēng)。

GAN 的原理示意圖

給定一組目標(biāo)樣本,生成器試圖生成能夠欺騙鑒別器的樣本,使鑒別器認(rèn)為這些樣本是真實(shí)的。鑒別器試圖從假的 (生成的) 樣本中分辨出真實(shí)的 (目標(biāo)) 樣本。使用這種迭代訓(xùn)練方法,我們最終能得到一個(gè)非常擅長(zhǎng)生成足以以假亂真的樣本的生成器。

GAN 有很多應(yīng)用,因?yàn)樗鼈兛梢詫W(xué)習(xí)模仿幾乎所有類(lèi)型的數(shù)據(jù)分布。通常,GAN 用于移除圖像偽影、超分辨率、姿勢(shì)轉(zhuǎn)換,以及任何類(lèi)型的圖像翻譯,例如下面這些:

使用 GAN 進(jìn)行圖像翻譯 (Source:https://phillipi.github.io/pix2pix/)

然而,由于其無(wú)常的穩(wěn)定性,GAN 非常難以使用。不用說(shuō),許多研究人員已經(jīng)提出了很好的解決方案來(lái)減輕 GAN 訓(xùn)練中涉及的一些問(wèn)題。

然而,這一領(lǐng)域的研究進(jìn)展如此之快,以至于很難跟蹤所有有趣的想法。本文列出了一些常用的使 GAN 訓(xùn)練穩(wěn)定的技術(shù)。

使用 GAN 的缺點(diǎn)

GAN 難以使用的原因有很多,這里列出一些主要的原因。

1、模式坍塌 (Modecollapse)

自然數(shù)據(jù)分布是高度復(fù)雜且多模態(tài)的。也就是說(shuō),數(shù)據(jù)分布有很多“峰值”(peaks)或“模式”(modes)。每個(gè) mode 表示相似數(shù)據(jù)樣本的集中度,但與其他 mode 不同。

在 mode collapse 期間,生成器生成屬于一組有限模式集的樣本。當(dāng)生成器認(rèn)為它可以通過(guò)鎖定單個(gè)模式來(lái)欺騙鑒別器時(shí),就會(huì)發(fā)生這種情況。也就是說(shuō),生成器僅從這種模式來(lái)生成樣本。

頂部的圖像表示沒(méi)有發(fā)生 mode collapse 的 GAN 的輸出。底部的圖像表示發(fā)生了 mode collapse 的 GAN 的輸出

(Source: https://arxiv.org/pdf/1611.02163.pdf)

鑒別器最終會(huì)發(fā)現(xiàn)這種模式下的樣本是假的。但生成器僅僅是鎖定到另一種模式。這個(gè)循環(huán)無(wú)限重復(fù),從根本上限制了生成樣本的多樣性。

2、收斂 (Convergence)

GAN 訓(xùn)練中一個(gè)常見(jiàn)的問(wèn)題是 “我們應(yīng)該在什么時(shí)候停止訓(xùn)練?”。由于鑒別器損失降低時(shí),生成器損失增加 (反之亦然),我們不能根據(jù)損失函數(shù)的值來(lái)判斷收斂性。如下圖所示:

一個(gè)典型的 GAN 損失函數(shù)

3. 質(zhì)量

與前一個(gè)問(wèn)題一樣,很難定量地判斷生成器何時(shí)產(chǎn)生高質(zhì)量的樣品。在損失函數(shù)中加入額外的感知正則化可以在一定程度上緩解這種情況。

4. 度量標(biāo)準(zhǔn) (Metrics)

GAN 目標(biāo)函數(shù)可以解釋生成器或鑒別器相對(duì)于其他方法的性能表現(xiàn)。然而,它并不代表輸出的質(zhì)量或多樣性。因此,我們需要不同的度量標(biāo)準(zhǔn)。

8大技巧提高GAN性能

有很多技巧可以用來(lái)使 GAN 更加穩(wěn)定或更加強(qiáng)大。這里只解釋了相對(duì)較新的或較復(fù)雜的一些技術(shù)。

1、替代損失函數(shù) (Alternative Loss Functions)

針對(duì) GAN 的缺陷,最常用的一種修復(fù)方法是Wasserstein GAN。它本質(zhì)上用Earth Mover distance(Wasserstein-1 distance 或 EM distance) 來(lái)替代傳統(tǒng) GAN 的Jensen Shannon 散度。EM 距離的原始形式是難以處理的,因此我們使用它的 dual 形式。這要求鑒別器為 1-Lipschitz,它是通過(guò)削減鑒別器的權(quán)重來(lái)維持的。

使用 Earth Mover distance 的優(yōu)點(diǎn)是,即使真實(shí)的數(shù)據(jù)和生成的數(shù)據(jù)分布不相交,它也是連續(xù)的,這與 JS 散度或 KL 散度不同。同時(shí),生成的圖像質(zhì)量與損失值之間存在相關(guān)性。缺點(diǎn)是,我們需要對(duì)每個(gè)生成器更新執(zhí)行多個(gè)鑒別器更新。此外,作者認(rèn)為,利用權(quán)重削減來(lái)確保 1-Lipschitz 約束是一種糟糕的方法。

即使分布不連續(xù),earth mover distance(左)也是連續(xù)的,與 JS 散度 (右) 不同

另一個(gè)解決方案是使用均方損失 (mean squared loss)來(lái)替代對(duì)數(shù)損失。LSGAN 的作者認(rèn)為,傳統(tǒng)的 GAN 損失函數(shù)并沒(méi)有提供太多的激勵(lì)來(lái)將生成的數(shù)據(jù)分布 “拉” 到接近真實(shí)數(shù)據(jù)分布的位置。

原始 GAN 損失函數(shù)中的 log loss 并不關(guān)心生成的數(shù)據(jù)與決策邊界的距離 (決策邊界將真實(shí)數(shù)據(jù)和虛假數(shù)據(jù)分開(kāi))。另一方面,LSGAN 對(duì)遠(yuǎn)離決策邊界的生產(chǎn)樣本實(shí)施乘法,本質(zhì)上是將生成的數(shù)據(jù)分布 “拉” 得更接近真實(shí)的數(shù)據(jù)分布。LSGAN 用均方損失代替對(duì)數(shù)損失來(lái)實(shí)現(xiàn)這一點(diǎn)。

2、Two Timescale Update Rule(TTUR)

在這種方法中,我們對(duì)鑒別器和生成器使用不同的學(xué)習(xí)率。通常,生成器使用較慢的更新規(guī)則 (update rule),鑒別器使用較快的更新規(guī)則。使用這種方法,我們可以以 1:1 的比例執(zhí)行生成器和識(shí)別器的更新,只需要修改學(xué)習(xí)率。SAGAN 實(shí)現(xiàn)正是使用了這種方法。

3、梯度懲罰 (GradientPenalty)

在 Improved Training of WGANs 這篇論文中,作者聲稱(chēng)weight clipping會(huì)導(dǎo)致優(yōu)化問(wèn)題。

作者表示, weight clipping 迫使神經(jīng)網(wǎng)絡(luò)學(xué)習(xí)最優(yōu)數(shù)據(jù)分布的 “更簡(jiǎn)單的近似”,從而導(dǎo)致較低質(zhì)量的結(jié)果。他們還聲稱(chēng),如果沒(méi)有正確設(shè)置 WGAN 超參數(shù),那么 weight clipping 會(huì)導(dǎo)致梯度爆炸或梯度消失問(wèn)題。

作者在損失函數(shù)中引入了一個(gè)簡(jiǎn)單的gradient penalty,從而緩解了上述問(wèn)題。此外,與最初的 WGAN 實(shí)現(xiàn)一樣,保留了 1-Lipschitz 連續(xù)性。

與 WGAN-GP 原始論文一樣,添加了 gradient penalty 作為一個(gè)正則化器

DRAGAN的作者聲稱(chēng),當(dāng) GAN 所玩的游戲達(dá)到 “局部平衡狀態(tài)” 時(shí),就會(huì)發(fā)生 mode collapse。他們還聲稱(chēng),鑒別器圍繞這些狀態(tài)產(chǎn)生的梯度是“尖銳的”。當(dāng)然,使用 gradient penalty 可以幫助我們避開(kāi)這些狀態(tài),大大增強(qiáng)穩(wěn)定性,減少模式崩潰。

4、譜歸一化 (Spectral Normalization)

Spectral Normalization 是一種權(quán)重歸一化技術(shù),通常用于鑒別器上,以增強(qiáng)訓(xùn)練過(guò)程。這本質(zhì)上保證了鑒別器是K-Lipschitz連續(xù)的。

像 SAGAN 這樣的一些實(shí)現(xiàn),也在生成器上使用 spectral Normalization。該方法比梯度懲罰法計(jì)算效率更高。

5、Unrolling 和Packing

防止 mode hopping 的一種方法是預(yù)測(cè)未來(lái),并在更新參數(shù)時(shí)預(yù)測(cè)對(duì)手。Unrolled GAN 使生成器能夠在鑒別器有機(jī)會(huì)響應(yīng)之后欺騙鑒別器。

防止 mode collapse 的另一種方法是在將屬于同一類(lèi)的多個(gè)樣本傳遞給鑒別器之前 “打包” 它們,即packing。這種方法被 PacGAN 采用,在 PacGAN 論文中,作者報(bào)告了 mode collapse 有適當(dāng)減少。

6、堆疊 GAN

單個(gè) GAN 可能不足以有效地處理任務(wù)。我們可以使用多個(gè)連續(xù)堆疊的 GAN,其中每個(gè) GAN 可以解決問(wèn)題中更簡(jiǎn)單的一部分。例如,F(xiàn)ashionGAN 使用兩個(gè) GAN 來(lái)執(zhí)行局部圖像翻譯。

FashionGAN 使用兩個(gè) GAN 進(jìn)行局部圖像翻譯

把這個(gè)概念發(fā)揮到極致,我們可以逐漸加大 GAN 所解決的問(wèn)題的難度。例如,Progressive GAN (ProGAN)可以生成高質(zhì)量的高分辨率圖像。

7、Relativistic GAN

傳統(tǒng)的 GAN 測(cè)量生成的數(shù)據(jù)是真實(shí)數(shù)據(jù)的概率。 Relativistic GAN 測(cè)量生成的數(shù)據(jù)比真實(shí)數(shù)據(jù) “更真實(shí)” 的概率。正如 RGAN 論文中提到的,我們可以使用適當(dāng)?shù)木嚯x度量來(lái)度量這種“相對(duì)真實(shí)性”。

使用標(biāo)準(zhǔn) GAN loss 時(shí)鑒別器的輸出 (圖 B)。圖 C 表示輸出曲線的實(shí)際樣子。圖 A 表示 JS 散度的最優(yōu)解。

作者還提到,鑒別器的輸出在達(dá)到最優(yōu)狀態(tài)時(shí)應(yīng)該收斂到 0.5。然而,傳統(tǒng)的 GAN 訓(xùn)練算法強(qiáng)迫鑒別器對(duì)任何圖像輸出 “real”(即 1)。這在某種程度上阻止了鑒別器達(dá)到其最優(yōu)值。 relativistic 方法也解決了這個(gè)問(wèn)題,并取得了相當(dāng)顯著的效果,如下圖所示:

經(jīng)過(guò) 5000 次迭代后,標(biāo)準(zhǔn) GAN(左) 和 relativistic GAN(右) 的輸出

8、自注意力機(jī)制

Self Attention GANs 的作者表示,用于生成圖像的卷積會(huì)查看局部傳播的信息。也就是說(shuō),由于它們限制性的 receptive field,它們錯(cuò)過(guò)了全局性的關(guān)系。

將 attention map(在黃色框中計(jì)算) 添加到標(biāo)準(zhǔn)卷積操作中

Self-Attention GAN 允許對(duì)圖像生成任務(wù)進(jìn)行注意力驅(qū)動(dòng)的長(zhǎng)期依賴(lài)建模。 Self-Attention 機(jī)制是對(duì)普通卷積運(yùn)算的補(bǔ)充。全局信息 (遠(yuǎn)程依賴(lài)) 有助于生成更高質(zhì)量的圖像。網(wǎng)絡(luò)可以選擇忽略注意機(jī)制,也可以將其與正常卷積一起考慮。

對(duì)紅點(diǎn)標(biāo)記的位置的 attention map 的可視化

總結(jié)

研究社區(qū)已經(jīng)提出了許多解決方案和技巧來(lái)克服 GAN 訓(xùn)練的缺點(diǎn)。然而,由于新研究的數(shù)量龐大,很難跟蹤所有重要的貢獻(xiàn)。

由于同樣的原因,這篇文章中分享的細(xì)節(jié)并非詳盡無(wú)疑,可能在不久的將來(lái)就會(huì)過(guò)時(shí)。盡管如此,還是希望本文能夠成為人們尋找改進(jìn) GAN 性能的方法的一個(gè)指南。

聲明:本文內(nèi)容及配圖由入駐作者撰寫(xiě)或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場(chǎng)。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問(wèn)題,請(qǐng)聯(lián)系本站處理。 舉報(bào)投訴
  • 神經(jīng)網(wǎng)絡(luò)

    關(guān)注

    42

    文章

    4782

    瀏覽量

    101226
  • GaN
    GaN
    +關(guān)注

    關(guān)注

    19

    文章

    1966

    瀏覽量

    74339
收藏 人收藏

    評(píng)論

    相關(guān)推薦

    意法半導(dǎo)體新能源功率器件解決方案

    在《意法半導(dǎo)體新能源功率解決方案:從產(chǎn)品到應(yīng)用,一文讀懂(上篇)》文章中,我們著重介紹了ST新能源功率器件中的傳統(tǒng)IGBT和高壓MOSFET器件,讓大家對(duì)其在相關(guān)領(lǐng)域的應(yīng)用有了一定了解。接下來(lái),本文將聚焦于ST的SiC、GaN
    的頭像 發(fā)表于 02-07 10:38 ?181次閱讀
    意法半導(dǎo)體新能源功率器件<b class='flag-5'>解決方案</b>

    GaN半橋功率IC和AHB/圖騰柱拓?fù)浣Y(jié)構(gòu)可實(shí)現(xiàn)效率高達(dá)95.5%的240W、150cc PD3.1解決方案

    電子發(fā)燒友網(wǎng)站提供《GaN半橋功率IC和AHB/圖騰柱拓?fù)浣Y(jié)構(gòu)可實(shí)現(xiàn)效率高達(dá)95.5%的240W、150cc PD3.1解決方案.pdf》資料免費(fèi)下載
    發(fā)表于 01-22 14:46 ?0次下載
    <b class='flag-5'>GaN</b>半橋功率IC和AHB/圖騰柱拓?fù)浣Y(jié)構(gòu)可實(shí)現(xiàn)效率高達(dá)95.5%的240W、150cc PD3.1<b class='flag-5'>解決方案</b>

    多功能智慧路燈系統(tǒng)整體解決方案介紹

    多功能智慧路燈系統(tǒng)整體解決方案介紹
    的頭像 發(fā)表于 01-15 09:12 ?121次閱讀
    多功能智慧路燈系統(tǒng)整體<b class='flag-5'>解決方案</b><b class='flag-5'>介紹</b>

    納芯微提供全場(chǎng)景GaN驅(qū)動(dòng)IC解決方案

    了更高的要求。 按照柵極特性差異,GaN分為常開(kāi)的耗盡型(D-mode)和常關(guān)的增強(qiáng)型(E-mode)兩種類(lèi)型;按照應(yīng)用場(chǎng)景差異,GaN需要隔離或非隔離、低邊或自舉、零伏或負(fù)壓關(guān)斷等多種驅(qū)動(dòng)方式。針對(duì)不同類(lèi)型的GaN和各種應(yīng)用
    的頭像 發(fā)表于 11-14 09:22 ?497次閱讀
    納芯微提供全場(chǎng)景<b class='flag-5'>GaN</b>驅(qū)動(dòng)IC<b class='flag-5'>解決方案</b>

    NVIDIA助力麗蟾科技打造AI訓(xùn)練與推理加速解決方案

    麗蟾科技通過(guò) Leaper 資源管理平臺(tái)集成 NVIDIA AI Enterprise,為企業(yè)和科研機(jī)構(gòu)提供了一套高效、靈活的 AI 訓(xùn)練與推理加速解決方案。無(wú)論是在復(fù)雜的 AI 開(kāi)發(fā)任務(wù)中,還是在高并發(fā)推理場(chǎng)景下,都能夠確保項(xiàng)目的順利進(jìn)行,并顯著提升業(yè)務(wù)效率與創(chuàng)新能力。
    的頭像 發(fā)表于 10-27 10:03 ?322次閱讀
    NVIDIA助力麗蟾科技打造AI<b class='flag-5'>訓(xùn)練</b>與推理加速<b class='flag-5'>解決方案</b>

    全國(guó)產(chǎn)化基于腦機(jī)接口的中風(fēng)后主動(dòng)康復(fù)訓(xùn)練解決方案

    方案簡(jiǎn)介 唯理中風(fēng)康復(fù)訓(xùn)練解決方案由腦電圖設(shè)備與臂環(huán)設(shè)備共同構(gòu)成,配合PC端算法軟件,可以實(shí)現(xiàn)中風(fēng)偏癱患者的主動(dòng)式上肢和手部訓(xùn)練。算法軟件采
    的頭像 發(fā)表于 10-23 18:17 ?273次閱讀
    全國(guó)產(chǎn)化基于腦機(jī)接口的中風(fēng)后主動(dòng)康復(fù)<b class='flag-5'>訓(xùn)練</b><b class='flag-5'>解決方案</b>

    GaN應(yīng)用介紹

    電子發(fā)燒友網(wǎng)站提供《GaN應(yīng)用介紹.pdf》資料免費(fèi)下載
    發(fā)表于 09-12 09:55 ?0次下載
    <b class='flag-5'>GaN</b>應(yīng)用<b class='flag-5'>介紹</b>

    GaN HEMT有哪些優(yōu)缺點(diǎn)

    GaN HEMT(氮化鎵高電子遷移率晶體管)作為一種先進(jìn)的功率半導(dǎo)體器件,在電力電子、高頻通信、汽車(chē)電子等多個(gè)領(lǐng)域展現(xiàn)出了顯著的優(yōu)勢(shì),但同時(shí)也存在一些缺點(diǎn)。以下是對(duì)GaN HEMT優(yōu)缺點(diǎn)
    的頭像 發(fā)表于 08-15 11:09 ?1799次閱讀

    基于腦機(jī)接口的中風(fēng)后主動(dòng)康復(fù)訓(xùn)練解決方案

    方案簡(jiǎn)介 唯理中風(fēng)康復(fù)訓(xùn)練解決方案由腦電圖設(shè)備與臂環(huán)設(shè)備共同構(gòu)成,配合PC端算法軟件,可以實(shí)現(xiàn)中風(fēng)偏癱患者的主動(dòng)式上肢和手部訓(xùn)練。算法軟件采
    的頭像 發(fā)表于 07-15 17:35 ?313次閱讀
    基于腦機(jī)接口的中風(fēng)后主動(dòng)康復(fù)<b class='flag-5'>訓(xùn)練</b><b class='flag-5'>解決方案</b>

    格芯收購(gòu) Tagore Technology 的 GaN 技術(shù)

    Technology 專(zhuān)有且經(jīng)過(guò)生產(chǎn)驗(yàn)證的功率氮化鎵 (GaN) IP 產(chǎn)品組合,這是一種高功率密度解決方案,旨在突破汽車(chē)、物聯(lián)網(wǎng) (IoT) 和人工智能 (AI) 數(shù)據(jù)中心等廣泛電源應(yīng)用的效率和性能界限。隨著生成式
    的頭像 發(fā)表于 07-08 12:33 ?554次閱讀

    人臉識(shí)別模型訓(xùn)練失敗原因有哪些

    : 1.1 數(shù)據(jù)量不足 人臉識(shí)別模型需要大量的數(shù)據(jù)進(jìn)行訓(xùn)練,以提高模型的泛化能力。如果數(shù)據(jù)量不足,模型可能無(wú)法學(xué)習(xí)到足夠的特征,導(dǎo)致訓(xùn)練失敗。解決方案是增加數(shù)據(jù)量,可以通過(guò)數(shù)據(jù)增強(qiáng)、數(shù)
    的頭像 發(fā)表于 07-04 09:17 ?765次閱讀

    GaN快充芯片U8607為18~65W應(yīng)用提供全新解決方案

    GaN快充芯片U8607為18~65W應(yīng)用提供全新解決方案YinLianBao1在各式各樣的快充充電器之中,“GaN”這三個(gè)字近日越來(lái)越受到消費(fèi)者的青睞。GaN快充充電器是一種基于
    的頭像 發(fā)表于 06-28 08:10 ?528次閱讀
    <b class='flag-5'>GaN</b>快充芯片U8607為18~65W應(yīng)用提供全新<b class='flag-5'>解決方案</b>

    24W原邊GAN電源芯片方案U8607簡(jiǎn)化電源BOM

    24W原邊GAN電源芯片方案U8607是一款集成E-GaN的恒壓恒流PSR反激功率開(kāi)關(guān)管,可為18~65W適配器應(yīng)用提供全新的解決方案。
    的頭像 發(fā)表于 05-22 15:54 ?937次閱讀

    智慧能源物聯(lián)網(wǎng)解決方案及產(chǎn)品介紹

    電子發(fā)燒友網(wǎng)站提供《智慧能源物聯(lián)網(wǎng)解決方案及產(chǎn)品介紹.pdf》資料免費(fèi)下載
    發(fā)表于 04-08 15:42 ?2次下載

    智慧用電產(chǎn)品解決方案介紹

    智慧用電產(chǎn)品解決方案介紹
    的頭像 發(fā)表于 03-05 08:08 ?413次閱讀
    智慧用電產(chǎn)品<b class='flag-5'>解決方案</b><b class='flag-5'>介紹</b>