欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
會員中心
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

ICML 2019最佳論文新鮮出爐!

DPVg_AI_era ? 來源:lq ? 2019-06-15 10:02 ? 次閱讀

今日,國際機器學(xué)習(xí)頂會ICML公布2019年最佳論文獎:來自蘇黎世聯(lián)邦理工大學(xué)、谷歌大腦等的團隊和英國劍橋大學(xué)團隊獲此殊榮。另外,大會還公布了7篇獲最佳論文提名的論文。

ICML 2019最佳論文新鮮出爐!

今日,國際機器學(xué)習(xí)頂會ICML 2019于美國長灘市公布了本屆大會最佳論文結(jié)果:

本屆ICML兩篇最佳論文分別是:

《挑戰(zhàn)無監(jiān)督解耦表示中的常見假設(shè)》,來自蘇黎世聯(lián)邦理工學(xué)院(ETH Zurich)、MaxPlanck 智能系統(tǒng)研究所及谷歌大腦;

《稀疏高斯過程回歸變分的收斂速度》,來自英國劍橋大學(xué)。

除此之外,大會還公布了七篇獲得提名獎(Honorable Mentions)論文。

據(jù)了解,今年ICML共提交3424篇論文,其中錄取774篇,論文錄取率為22.6%。錄取率較去年ICML 2018的25%有所降低。

論文錄取結(jié)果地址:

https://icml.cc/Conferences/2019/AcceptedPapersInitial?fbclid=IwAR0zqRJfPz2UP7dCbZ8Jcy7MrsedhasX13ueqkKl934EsksuSj3J2QrrRAQ

提交論文最多的子領(lǐng)域分別是:深度學(xué)習(xí)、通用機器學(xué)習(xí)、強化學(xué)習(xí)、優(yōu)化等

最佳論文:大規(guī)模深入研究無監(jiān)督解耦表示

第一篇最佳論文的作者來自蘇黎世聯(lián)邦理工學(xué)院(ETH Zurich)、MaxPlanck 智能系統(tǒng)研究所及谷歌大腦。

論文標(biāo)題:挑戰(zhàn)無監(jiān)督解耦表示中的常見假設(shè)

Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations

作者:Francesco Locatello, Stefan Bauer, Mario Lucic, Gunnar R?tsch, Sylvain Gelly, Bernhard Sch?lkopf, Olivier Bachem

論文地址:

http://proceedings.mlr.press/v97/locatello19a/locatello19a.pdf

這是一篇大規(guī)模深入研究無監(jiān)督解耦表示(Disentangled Representation)的論文,對近年來絕大多數(shù)的非監(jiān)督解耦表示方法進(jìn)行了探索、利用 2.5GPU 年的算力在 7 個數(shù)據(jù)集上訓(xùn)練了 12000 多個模型?;诖笠?guī)模的實驗結(jié)果,研究人員對這一領(lǐng)域的一些假設(shè)產(chǎn)生了質(zhì)疑,并為解耦學(xué)習(xí)的未來發(fā)展方向給出了建議。此外,研究人員還同時發(fā)布了研究中所使用的代碼和上萬個預(yù)訓(xùn)練模型,并封裝了 disentanglement_lib供研究者進(jìn)行實驗復(fù)現(xiàn)和更深入的探索。

論文摘要

無監(jiān)督學(xué)習(xí)解耦表示背后的關(guān)鍵思想是,真實世界數(shù)據(jù)是由一些變量的解釋因子生成的,這些因子可以通過無監(jiān)督學(xué)習(xí)算法恢復(fù)。在本文中,我們認(rèn)真回顧了該領(lǐng)域的最新進(jìn)展,并對一些常見假設(shè)提出挑戰(zhàn)。

我們首先從理論上證明,如果沒有對模型和數(shù)據(jù)的歸納偏置,解耦表示的無監(jiān)督學(xué)習(xí)基本上是不可能的。然后,我們在7個不同數(shù)據(jù)集上訓(xùn)練了超過12000個模型,涵蓋了最重要的方法和評估指標(biāo),進(jìn)行了可重復(fù)的大規(guī)模實驗研究。

我們觀察到,雖然不同的方法都成功地執(zhí)行了相應(yīng)損失“鼓勵”的屬性,但如果沒有監(jiān)督,似乎無法識別出良好解耦的模型。此外,增加解耦似乎不會降低下游任務(wù)學(xué)習(xí)的樣本復(fù)雜度。

我們的研究結(jié)果表明,未來關(guān)于解耦學(xué)習(xí)的工作應(yīng)該明確歸納偏見和(隱式)監(jiān)督的作用,研究強制解耦學(xué)習(xí)表示的具體好處,并考慮覆蓋多個數(shù)據(jù)集的可重復(fù)的實驗設(shè)置。

本文從理論和實踐兩方面對這一領(lǐng)域中普遍存在的一些假設(shè)提出了挑戰(zhàn)。本研究的主要貢獻(xiàn)可概括如下:

我們在理論上證明,如果沒有對所考慮的學(xué)習(xí)方法和數(shù)據(jù)集產(chǎn)生歸納偏置,那么解耦表示的無監(jiān)督學(xué)習(xí)基本上是不可能的。

我們在一項可重復(fù)的大規(guī)模實驗研究中研究了當(dāng)前的方法及其歸納偏置,該研究采用了完善的無監(jiān)督解耦學(xué)習(xí)實驗方案。我們實現(xiàn)了六種最新的無監(jiān)督解耦學(xué)習(xí)方法以及六種從頭開始的解耦方法,并在七個數(shù)據(jù)集上訓(xùn)練了超過12000個模型。

我們發(fā)布了disentanglement_lib,這是一個用于訓(xùn)練和評估解耦表示的新庫。由于復(fù)制我們的結(jié)果需要大量的計算工作,我們還發(fā)布了超過10000個預(yù)訓(xùn)練的模型,可以作為未來研究的基線。

我們分析實驗結(jié)果,并挑戰(zhàn)了無監(jiān)督解耦學(xué)習(xí)中的一些共識:

(i)雖然所有考慮的方法都證明有效確保聚合后驗的各個維度不相關(guān),我們觀察到的表示維度是相關(guān)的

(ii)由于random seeds和超參數(shù)似乎比模型選擇更重要,我們沒有發(fā)現(xiàn)任何證據(jù)表明所考慮的模型可以用于以無監(jiān)督的方式可靠地學(xué)習(xí)解耦表示。此外,如果不訪問ground-truth標(biāo)簽,即使允許跨數(shù)據(jù)集傳輸良好的超參數(shù)值,似乎也無法識別良好訓(xùn)練的模型。

(iii)對于所考慮的模型和數(shù)據(jù)集,我們無法驗證以下假設(shè),即解耦對于下游任務(wù)是有用的,例如通過降低學(xué)習(xí)的樣本復(fù)雜性。

基于這些實證證據(jù),我們提出了進(jìn)一步研究的三個關(guān)鍵領(lǐng)域:

(i)歸納偏置的作用以及隱性和顯性監(jiān)督應(yīng)該明確:無監(jiān)督模型選擇仍然是一個關(guān)鍵問題。

(ii) 應(yīng)證明強制執(zhí)行學(xué)習(xí)表示的特定解耦概念的具體實際好處。

(iii) 實驗應(yīng)在不同難度的數(shù)據(jù)集上建立可重復(fù)的實驗設(shè)置。

最佳論文:稀疏高斯過程回歸變分的收斂速度

第二篇最佳論文來自英國劍橋大學(xué)。

論文標(biāo)題:《稀疏高斯過程回歸變分的收斂速度》

Rates of Convergence for Sparse Variational Gaussian Process Regression

作者:DavidR. Burt1,Carl E. Rasmussen1,Mark van der Wilk2

arXiv地址:

https://arxiv.org/pdf/1903.03571.pdf

論文摘要

自從許多研究人提出了對高斯過程后驗的變分近似法后,避免了數(shù)據(jù)集大小為N時O(N3)的縮放。它們將計算成本降低到O(NM2),其中M≤N是誘導(dǎo)變量的數(shù)量。雖然N的計算成本似乎是線性的,但算法的真正復(fù)雜性取決于M如何增加以確保一定的近似質(zhì)量。

研究人員通過描述KL向后發(fā)散的上界行為來解決這個問題。證明了在高概率下,M的增長速度比N慢, KL的發(fā)散度可以任意地減小。

一個特別有趣的例子是,對于具有D維度的正態(tài)分布輸入的回歸,使用流行的 Squared Exponential核M就足夠了。研究結(jié)果表明,隨著數(shù)據(jù)集的增長,高斯過程后驗可以真正近似地逼近,并為如何在連續(xù)學(xué)習(xí)場景中增加M提供了具體的規(guī)則。

總結(jié)

研究人員證明了稀疏GP回歸變分近似到后驗變分近似的KL發(fā)散的界限,該界限僅依賴于先驗核的協(xié)方差算子的特征值的衰減。

這些邊界證明了直觀的結(jié)果,平滑的核、訓(xùn)練數(shù)據(jù)集中在一個小區(qū)域,允許高質(zhì)量、非常稀疏的近似。這些邊界證明了用M≤N進(jìn)行真正稀疏的非參數(shù)推理仍然可以提供可靠的邊際似然估計和點后驗估計。

對非共軛概率模型的擴展,是未來研究的一個有前景的方向。

DeepMind、牛津、MIT等7篇最佳論文提名

除了最佳論文外,本次大會還公布了7篇獲得榮譽獎的論文。

Analogies Explained: Towards Understanding Word Embeddings

作者:CarlAllen1,Timothy Hospedales1,來自愛丁堡大學(xué)。

論文地址:https://arxiv.org/pdf/1901.09813.pdf

SATNet: Bridging deep learning and logical reasoning using a differentiable satisfiability solver

作者:Po-WeiWang1,Priya L. Donti1 2,Bryan Wilder3,Zico Kolter1 4,分別來自卡耐基梅隆大學(xué)、南加州大學(xué)、Bosch Center for Artificial Intelligence。

論文地址:https://arxiv.org/pdf/1905.12149.pdf

A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks

作者:Umut?im?ekli?,L, event Sagun?, Mert Gürbüzbalaban?,分別來自巴黎薩克雷大學(xué)、洛桑埃爾科爾理工大學(xué)、羅格斯大學(xué)。

論文地址:https://arxiv.org/pdf/1901.06053.pdf

Towards A Unified Analysis of Random Fourier Features

作者:Zhu Li,Jean-Fran?ois Ton,Dino Oglic,Dino Sejdinovic,分別來自牛津大學(xué)、倫敦國王學(xué)院。

論文地址:https://arxiv.org/pdf/1806.09178.pdf

Amortized Monte Carlo Integration

作者:Adam Golinski、Yee Whye Teh、Frank Wood、Tom Rainforth,分別來自牛津大學(xué)和英屬哥倫比亞大學(xué)。

論文地址:http://www.gatsby.ucl.ac.uk/~balaji/udl-camera-ready/UDL-12.pdf

Social Influence as Intrinsic Motivation for Multi-Agent Deep Reinforcement Learning

作者:Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro A. Ortega, DJ Strouse, Joel Z. Leibo, Nando de Freitas,分別來自MIT媒體實驗室、DeepMind和普林斯頓大學(xué)。

論文地址:https://arxiv.org/pdf/1810.08647.pdf

Stochastic Beams and Where to Find Them: The Gumbel-Top-k Trick for Sampling Sequences Without Replacement

作者:Wouter Kool, Herke van Hoof, Max Welling,分別來自荷蘭阿姆斯特丹大學(xué),荷蘭ORTEC和加拿大高等研究所(CIFAR)。

論文地址:https://arxiv.org/pdf/1903.06059.pdf

ICML 2019:谷歌成為最大贏家,清北、南大港中文榜上有名

本次大會還統(tǒng)計了收錄論文的領(lǐng)域分布情況:

提交論文最多的子領(lǐng)域分別是:深度學(xué)習(xí)、通用機器學(xué)習(xí)、強化學(xué)習(xí)、優(yōu)化等。

而早在上個月,Reddit網(wǎng)友就發(fā)表了他和他的公司對本次ICML 2019論文錄取情況的統(tǒng)計結(jié)果。

地址:

https://www.reddit.com/r/MachineLearning/comments/bn82ze/n_icml_2019_accepted_paper_stats/

今年,在所有錄取的論文中,谷歌無疑成為了最大贏家。

錄取論文總數(shù)排名(按研究所)

上表顯示了以研究所(包括產(chǎn)業(yè)界和學(xué)術(shù)界)為單位,錄取論文總數(shù)的排名。這項統(tǒng)計中至少有一位作者隸屬于某研究所,因此一篇論文可以出現(xiàn)多次且隸屬多個研究所。

排名地址:

https://i.redd.it/wdbw91yheix21.png

其中,藍(lán)色代表論文總數(shù),綠色和紅色分別代表第一作者和通訊作者參與錄取論文的論文數(shù)量。并且,附屬機構(gòu)是手動合并到研究所的,例如Google Inc.、Google AI、Google UK都將映射到Google。

可以看到谷歌錄取論文的數(shù)量遠(yuǎn)超其它研究所,位列第一;緊隨其后的是MIT、伯克利、谷歌大腦、斯坦福、卡內(nèi)基梅隆以及微軟。

作者還分別根據(jù)學(xué)界和產(chǎn)業(yè)界進(jìn)行了統(tǒng)計Top 50排名。

排名統(tǒng)計可視化地址:

https://i.redd.it/37hxhsmfzix21.png

在學(xué)界排名中,MIT、加州伯克利分校、斯坦福和卡內(nèi)基梅隆奪冠前四,成為本屆錄取論文數(shù)的第一梯隊,且與第二梯隊拉開了一定差距。

國內(nèi)上榜的院校包括清華大學(xué)、北京大學(xué)、南京大學(xué)、香港中文大學(xué)。

排名可視化地址:

https://i.redd.it/wa6kjzmhzix21.png

在企業(yè)研究所Top 50排名中,谷歌無疑成為最大贏家:谷歌、谷歌大腦和谷歌DeepMind分別取得第一、第二和第四的好成績。微軟、Facebook和IBM成績也較優(yōu)異,位居第三、第五和第六。

而對于國內(nèi)企業(yè),騰訊(Tencent)成績較好,位居第八名。

此外,從本屆ICML 2019錄取論文情況來看,還可以得到如下統(tǒng)計:

452篇論文(58.4%)純屬學(xué)術(shù)研究;

60篇論文(7.8%)來自工業(yè)研究機構(gòu);

262篇論文(33.9%)作者隸屬于學(xué)術(shù)界和工業(yè)界。

總結(jié)上述的統(tǒng)計,我們可以得到如下結(jié)果:

77%的貢獻(xiàn)來自學(xué)術(shù)界;

23%的貢獻(xiàn)來自產(chǎn)業(yè)界。

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報投訴
  • 智能系統(tǒng)
    +關(guān)注

    關(guān)注

    2

    文章

    399

    瀏覽量

    72650
  • 機器學(xué)習(xí)
    +關(guān)注

    關(guān)注

    66

    文章

    8449

    瀏覽量

    133135
  • 論文
    +關(guān)注

    關(guān)注

    1

    文章

    103

    瀏覽量

    14977

原文標(biāo)題:ICML 2019最佳論文出爐,超高數(shù)學(xué)難度!ETH、谷歌、劍橋分獲大獎

文章出處:【微信號:AI_era,微信公眾號:新智元】歡迎添加關(guān)注!文章轉(zhuǎn)載請注明出處。

收藏 人收藏

    評論

    相關(guān)推薦

    華邦電子安全閃存關(guān)鍵知識點

    博士開啟寵粉模式,打包放送關(guān)于安全閃存的十大硬核問答,文末更有新鮮出爐的干貨《滿足歐盟“無線電設(shè)備指令”(RED)信息安全標(biāo)準(zhǔn)》白皮書供您下載!
    的頭像 發(fā)表于 02-12 18:15 ?195次閱讀

    [求職] RK3588核心板,尋找志同道合的電子發(fā)燒友!

    基本信息 姓名: RK3588核心板 性別: 男 年齡: 新鮮出爐 聯(lián)系方式: 13632965530 期望職位: 智能硬件開發(fā)平臺、邊緣計算平臺、AIoT應(yīng)用開發(fā)平臺 期望薪資
    發(fā)表于 02-11 10:49

    廣電計量新年首篇深度研究報告出爐

    新年伊始,廣電計量首篇深度研究報告出爐,公司憑借全面發(fā)展的企業(yè)實力和資本市場的優(yōu)異表現(xiàn)在新的一年獲得資本市場的認(rèn)可。
    的頭像 發(fā)表于 01-03 11:31 ?400次閱讀

    安波福再獲“全球最佳企業(yè)”與“最佳管理企業(yè)”

    日前,《時代周刊》(TIME)聯(lián)合權(quán)威調(diào)研機構(gòu)Statista發(fā)布“2024全球最佳企業(yè)”榜單。安波福憑借員工滿意度、營收和ESG等方面的卓越表現(xiàn),獲得90.14的高分,與蘋果、埃森哲、微軟、寶馬、亞馬遜等行業(yè)巨頭共同登榜,蟬聯(lián)全球最佳企業(yè)!
    的頭像 發(fā)表于 12-20 14:26 ?307次閱讀

    比亞迪獲評AUTOBEST 2025年度最佳企業(yè)

    近日,歐洲最大獨立汽車媒體評獎機構(gòu)AUTOBEST年度評選結(jié)果出爐,歐洲31國汽車媒體組成的評審團一致授予比亞迪“2025年度最佳企業(yè)”稱號。繼去年AUTOBEST將海豚(BYD DOLPHIN)評為“2024年度歐洲最值得購買汽車”后,這一榮譽是對比亞迪全球汽車市場成就
    的頭像 發(fā)表于 12-17 14:12 ?290次閱讀

    商湯科技徐立論文再獲“時間檢驗獎”

    十幾年前的論文為何還能獲獎?因為經(jīng)過了時間的檢驗。
    的頭像 發(fā)表于 12-12 10:23 ?224次閱讀

    安波福蘇州榮獲“2024大蘇州最佳雇主”及“2024最佳HR團隊獎”

    日前,“2024第十一屆大蘇州最佳雇主”頒獎盛典隆重舉行。安波福電子(蘇州)有限公司獲頒“2024大蘇州最佳雇主”及“2024最佳HR團隊獎”。
    的頭像 發(fā)表于 10-14 09:54 ?687次閱讀

    中科馭數(shù)聯(lián)合處理器芯片全國重點實驗室獲得“CCF芯片大會最佳論文獎”

    Accelerator on FPGA with Graph Reordering Engine》獲得“CCF芯片大會最佳論文獎”。該項工作由鄢貴海研究員指導(dǎo)完成,論文第一作者是博士研究生樊海爽,
    的頭像 發(fā)表于 08-02 11:09 ?693次閱讀

    Samtec在2024慕尼黑上海電子展精彩回顧

    近日,2024慕尼黑上海電子展在上海新國際博覽中心圓滿落幕,Samtec虎家團隊為觀眾帶來了前所未有的豐富體驗:產(chǎn)品講解、采訪、Demo演示、直播互動等~進(jìn)擊的老虎 | Samtec亮相慕尼黑上海電子展 今天,我們將為大家?guī)碚箷?b class='flag-5'>新鮮出爐的Demo細(xì)節(jié)分享。
    的頭像 發(fā)表于 07-17 11:27 ?757次閱讀
    Samtec在2024慕尼黑上海電子展精彩回顧

    寬帶數(shù)控延時線芯片的研制論文

    電子發(fā)燒友網(wǎng)站提供《寬帶數(shù)控延時線芯片的研制論文.pdf》資料免費下載
    發(fā)表于 07-02 17:26 ?0次下載

    格靈深瞳名列「智慧校園體育品牌影響力綜合評價」榜首

    5月9日,由新京報教育事業(yè)部聯(lián)合千龍智庫輿情風(fēng)險評估治理中心共同發(fā)布的《2023年度智慧教育品牌影響力分析報告》新鮮出爐。
    的頭像 發(fā)表于 05-10 14:05 ?435次閱讀
    格靈深瞳名列「智慧校園體育品牌影響力綜合評價」榜首

    2024年汽車軟件開發(fā)狀況調(diào)查結(jié)果出爐:軟件研發(fā)人員必看

    在今年1月底,嵌入式靜態(tài)分析領(lǐng)域公認(rèn)的行業(yè)領(lǐng)導(dǎo)及先驅(qū)Perforce公司聯(lián)合北匯信息首次誠摯邀請中國汽車軟件開發(fā)專業(yè)人士參加2024年汽車發(fā)展行業(yè)狀況報告的調(diào)查?,F(xiàn)調(diào)查結(jié)果報告已新鮮出爐!在全球
    的頭像 發(fā)表于 04-26 08:25 ?1019次閱讀
    2024年汽車軟件開發(fā)狀況調(diào)查結(jié)果<b class='flag-5'>出爐</b>:軟件研發(fā)人員必看

    智能家居議程新鮮出爐!報名最后倒計時!

    智能家居峰會倒計時一周!議程新鮮出爐,快來看看有哪些亮點。 4月25日,由Big-Bit商務(wù)網(wǎng)主辦,佛山市智能家居產(chǎn)業(yè)協(xié)會、順德智能家居產(chǎn)業(yè)聯(lián)合會、順德區(qū)照明燈飾協(xié)會協(xié)辦、《半導(dǎo)體器件應(yīng)用》雜志承辦
    的頭像 發(fā)表于 04-22 15:41 ?348次閱讀
    智能家居議程<b class='flag-5'>新鮮出爐</b>!報名最后倒計時!

    基于高光譜成像的蔬菜新鮮度檢測

    蔬菜新鮮度的檢測對于流通過程中質(zhì)量控制具有重要意義。農(nóng)產(chǎn)品細(xì)胞內(nèi)的ATP含量水平直接反映細(xì)胞的活性,在產(chǎn)后貯藏過程中可作為農(nóng)產(chǎn)品新鮮度和品質(zhì)的一種評價指標(biāo)。近年來,高光譜成像技術(shù)在農(nóng)產(chǎn)品安全檢測方面
    的頭像 發(fā)表于 04-17 14:27 ?458次閱讀
    基于高光譜成像的蔬菜<b class='flag-5'>新鮮</b>度檢測

    蔚來智能駕駛月度運營報告新鮮出爐:新增智能駕駛用戶11,816名

    2024年3月,蔚來新增智能駕駛用戶11,816名,智能駕駛總用戶數(shù)達(dá)307,783名。其中,全域領(lǐng)航輔助NOP+用戶數(shù)達(dá)193,174名。智能駕駛端云算力新增11.5 EOPS,總算力達(dá)232.21 EOPS。
    的頭像 發(fā)表于 04-09 15:03 ?988次閱讀