同步整流反激變換器的設(shè)計
同步整流反激變換器的電路如圖3 所示,控制芯片選用UC3842。設(shè)計技術(shù)指標(biāo)如下:
工作方式:斷續(xù)模式
圖3 同步整流反激變換器電路
芯片 UC3842 工作的開啟電壓為16V,在芯片開啟之前,芯片消耗的電流在1mA 以內(nèi)。正常工作后,欠壓鎖定電壓為10V,上限為34V,芯片消耗電流約為15mA。啟動時由輸入直流電壓通過啟動電阻R4 向電容C2 充電,芯片消耗電流在1mA 以內(nèi),電容C2 上電壓不斷上升,當(dāng)芯片7 腳上電壓升至16V 時UC3842 開始工作,芯片消耗電流約為15mA,電容C2 上電壓下降,輔助繞組上開始有電壓,電容C3 上電壓逐漸升高,當(dāng)電容C3 上電壓高于電容C2 上電壓,二極管VD2 導(dǎo)通,由輔助繞組供電。輔助繞組供電電壓取15V,電壓紋波要求不高,濾波電容C3 取47μF。為了芯片可靠啟動,電容C2 取100μF,電阻R4 取68KΩ,在輸入電壓最小時,通過啟動電阻R4,能提供1.2mA的啟動電流。
RCD 箝位電路設(shè)計
當(dāng)開關(guān)管 Q 關(guān)閉時,初級電感 Lp中的能量將轉(zhuǎn)移到次級輸出,但漏感Ll中的能量將不能傳遞到次級,轉(zhuǎn)移到箝位電路的電容Cc,然后這部分能量被箝位電阻 Rc消耗。電容c C上的電壓在開關(guān)管關(guān)斷的一瞬間沖上去,然后一直處于放電狀態(tài)。電容 Cc的值應(yīng)取得足夠大以保證其在吸收漏感能量和釋放能量時自身兩端電壓uc(t )紋波足夠小。因此電容Cc 兩端電壓uc(t )為基本為恒定值Uc 。同時電容 Cc上的電壓不能低于次級到初級的反射電壓Uo× (Np/ Ns),否則開關(guān)管關(guān)斷期間,二極管導(dǎo)通,RCD 箝位電路將成為該變換器的一路負(fù)載。
仿真分析與結(jié)論
應(yīng)用 Saber 仿真軟件對本文設(shè)計的同步整流反激變換器進(jìn)行仿真。圖4 為輸入電壓200V,滿載時,初級MOS 管Q、次級同步整流管SR 驅(qū)動信號和次級電感電流波形。由圖可見,Q 關(guān)斷后,SR 經(jīng)過很短的延遲后就開通,次級電感電流降至接近零時,SR 關(guān)斷。圖5 為輸入電壓100V、200V、250V、300V 和375V,滿載條件下,分別采用同步整流和二極管整流時,系統(tǒng)效率的分布圖。
仿真結(jié)果與本文對同步整流反激變換器和同步整流管驅(qū)動電路的工作原理分析一致。同時仿真結(jié)果證明,該驅(qū)動電路可以很好實現(xiàn)同步整流功能,采用同步整流技術(shù)可以較好提高傳統(tǒng)反激變換器的效率。輸入電壓100V,滿載時,變換器效率最高為87.7%。
圖4 Ugs(Q),Ugs(SR),is 的波形
反激變換器應(yīng)用廣泛,采用同步整流技術(shù)能夠很好的提高反激變換器效率,同時為使同步整流管的驅(qū)動電路簡單,采用分立元件構(gòu)成驅(qū)動電路。詳細(xì)分析了同步整流反激變換器的工作原理和該驅(qū)動電路的工作原理,并在此基礎(chǔ)上設(shè)計了100V~375VDC 輸入,12V/4A 輸出的同步整流反激變換器,工作于電流斷續(xù)模式,控制芯片選用UC3842,對設(shè)計過程進(jìn)行了詳細(xì)論述。
評論