便攜產(chǎn)品充電電路旁路元件的選擇
手機、數(shù)碼相機、數(shù)碼攝像機、DVD播放器、MP3播放器和PDA等便攜式產(chǎn)品的充電電路設計可以采用四種不同的拓撲結(jié)構(gòu)。四種解決方案都使用帶外部旁路元件(見圖1)的控制PMU(電源管理單元)。本文將探討外部旁路元件的組成,并將討論各種設計的優(yōu)點和缺點。
圖1 帶外部旁路元件的解決方案
選擇旁路元件取決于不同因素和它們各自對設計的重要性,包括開關(guān)效率、功率損耗、散熱、驅(qū)動電路配置、PMU配置、PCB占位面積、封裝高度、ESD 容差和價格。充電電路額定電流小于600mA時,旁路元件經(jīng)常集成在PMU中,完全不需要外部元件,因此,本文著重于討論額定電流為1A的便攜式產(chǎn)品的充電電路。旁路元件的四種不同的拓撲結(jié)構(gòu)如圖2所示。
圖2 旁路元件的四種不同的拓補結(jié)構(gòu)
開關(guān)效率對于電路很重要,其中旁路元件的開關(guān)時間引起的損耗將影響電池壽命。
正在推出的開關(guān)充電電路在給定面積中的功耗比標準線性穩(wěn)壓器少。拓撲結(jié)構(gòu)A、B和D適用于這種情況,設計人員在選擇時可以著重考慮MOSFET的開關(guān)時間。
導電功耗是影響電路效率的重要因素。旁路元件上的壓降越小,功耗就越小。拓撲結(jié)構(gòu)A和B都含有肖特基二極管,其上的壓降相對較高,因此功耗也較大。拓撲結(jié)構(gòu)C是一個低VCEsat的雙極晶體管(BJT),其中設計人員必須考慮驅(qū)動電流損耗以及BJT上的損耗。拓撲結(jié)構(gòu)D使用了兩個串聯(lián)現(xiàn)代溝道(modern trench)MOSFET,其中兩個元件都增加了損耗。背靠背布置的小RDS(ON) MOSFET可提供極小的導通功耗。
散熱在線性穩(wěn)壓充電電路中起著重要作用。1A的線性穩(wěn)壓使這些超小的封裝產(chǎn)生大量的熱量。散熱方法之一是使用單獨封裝的元件,讓不同元件在PCB上均勻散熱。替代方案是將幾個元件封裝在一起,設計時需要著重考慮的是封裝熱阻。WDFN 2mm×2mm封裝中的BJT和MOSFET新產(chǎn)品的特征是墊盤暴露在下面,明顯降低了熱阻。使用拓撲結(jié)構(gòu)C(BJT)時,設計人員需要考慮潛在的熱量流失。
驅(qū)動電路配置會受PMU設計影響,大多數(shù)PMU會提供為BJT或MOSFET設計的驅(qū)動電路。在分立設計中,BJT會需要能被吸收或耗散的連續(xù)驅(qū)動電流。增益相對高的BJT需要更小的驅(qū)動電流。MOSFET需要高柵極電壓以得到低導通損耗。對于P溝道器件,可能需要增加一個電平偏移,而N溝道器件可能需要增加一個電荷泵。
PMU配置可能使用旁路元件完成充電以外的功能。拓撲結(jié)構(gòu)D中,旁路元件用作開關(guān),讓電流從充電電池返回到另一個元件或電路。這種配置經(jīng)常用于筆記本電腦中的可拆卸電池組上,其中相同的電池組連接器用于電池充電并對筆記本電腦供電。而且,在電話中,電池可用于驅(qū)動外部揚聲器、MP3播放器、藍牙等。
由于設計人員要不斷滿足更新的挑戰(zhàn),在更小的空間中容納更多的元件,因此,PCB占位面積和封裝高度也起著重要的作用。WDFN(0.75mm)或 UDFN封裝(0.55mm)的特征是外形極薄、占位面積小且性能高,它們是今天便攜式電子設備的中常選用的器件封裝方式。如果封裝高度和占位面積不重要,那么設計人員可以從所有四種拓撲結(jié)構(gòu)選擇多樣化的封裝形式,其中,拓撲結(jié)構(gòu)A需要挑選并放置另一額外元件。
隨著便攜式產(chǎn)品越來越小,ESD容差也變得越來越重要。鄰近或在連接器上的ESD電荷變得越來越重要。因為BJT(HB>8000V)的結(jié)構(gòu),其抗ESD性能明顯比MOSFET(HB>300V)好,而且不需要外部ESD保護,因此減少了元件數(shù)量。
價格始終是設計人員需要考慮的一個重要因素。封裝形式越老、封裝尺寸越大,價格就越低。比如,SOT23(3 mm×3mm)是業(yè)內(nèi)成本最低的封裝之一。至于其他小型封裝,如ChipFET(3mm×2mm)或最新的WDFN(2mm×2mm)封裝,尺寸更小、熱阻更低,但是價格較高。在體積較大、形式較老的封裝中使用拓撲結(jié)構(gòu)A將是性價比最高的解決方案。
結(jié)論
新產(chǎn)品推出時間越來越短,使得設計工程師不得不重用前一充電電路的設計,而這種做法常常使制造商陷入更被動的局面,因為他們的競爭對手正在評估最新的技術(shù)并應用這些新解決方案以獲得明顯的性能優(yōu)勢。市場需要更小、更薄、更快、更耐熱和更可靠的產(chǎn)品,在變攜產(chǎn)品的充電電路設計上,也是同樣,需要設計工程師考慮多方面的因素,最后取得性能和價格的平衡,使自己的產(chǎn)品能接受市場的挑戰(zhàn)。
如何權(quán)衡充電電池與電源管理
便攜式電子設備設計人員可以選擇各種各樣的化學技術(shù)、充電器拓撲以及充電管理解決方案。選擇一款最為合適的解決方案應該是一項很簡單的工作,但是在大多數(shù)情況下這一過程頗為復雜。設計人員需要在性能、成本、外形尺寸以及其他關(guān)鍵要求方面找到一個最佳平衡點。
本文將為廣大設計人員和系統(tǒng)工程師提供一些指導和幫助以使得該選擇工作變得更為輕松。
以3“C”開始實現(xiàn)充電控制
所有使用可充電電池的系統(tǒng)設計人員都需要清楚一些基礎設計技術(shù),以確保滿足下面三個關(guān)鍵的要求:
1、電池安全性:毋庸置疑,終端用戶安全是所有系統(tǒng)設計中最優(yōu)先考慮的問題。大多數(shù)鋰離子(Li-Ion)電池組和鋰聚合物(Li-Pol)電池組都含有保護電子電路。然而,還有一些系統(tǒng)設計需要考慮的關(guān)鍵因素。其中包括但不局限于確保在鋰離子電池充電最后階段期間1%的穩(wěn)壓容限、安全處理深度放電電池的預處理模式、安全計時器以及電池溫度監(jiān)控。
2、電池容量:所有的電池充電解決方案都要確保在每一次和每一個充電周期都能將電池容量充至充滿狀態(tài)。過早的終止充電會導致電池運行時間縮短,這是當今高功耗的便攜式設備所不希望的。
3、電池使用壽命:遵循建議的充電算法是確保終端用戶實現(xiàn)每個電池組最多充電周期的重要一步。利用電池溫度和電壓限定每一次充電、預處理深度放電電池并避免過晚或非正常充電終止是最大化電池使用壽命所必須的一些步驟。
表1:充電控制總結(jié)。
電池化學技術(shù)的選擇
現(xiàn)在系統(tǒng)設計人員可以在多種電池化學技術(shù)中進行選擇。設計人員通常會根據(jù)下面的一些標準進行電池化學技術(shù)的選擇,其中包括:
· 能量密度
· 規(guī)格和外形尺寸
· 成本
· 使用模式和使用壽命
近年來,盡管使用鋰離子電池和鋰聚合物電池的趨勢增強,但是Ni電池化學技術(shù)仍然是諸多消費類應用一個不錯的選項。
無論選擇何種電池化學技術(shù),遵循每一種電池化學技術(shù)的正確充電管理技術(shù)都是至關(guān)重要的。這些技術(shù)將確保電池在每一次和每個充電周期都能被充至最大容量,而不會降低安全性或縮短電池使用壽命。
NiCd/NIMH
在一個充電周期開始之前,并且盡可能在開始快速充電之前對鎳鎘(NiCd)電池和鎳氫(NiMH)電池必須要進行檢驗和調(diào)節(jié)。如果電池電壓或溫度超出了允許的極限是不允許進行快速充電的。出于安全考慮,對所有“熱”電池(一般高于45℃)的充電工作都會暫時終止,直到電池冷卻到正常工作溫度范圍內(nèi)才會再次運轉(zhuǎn)。要想處理一個“冷”電池(一般低于10℃)或過度放電的電池(每節(jié)電池通常低于1V),需要施加一個溫和的點滴式電流。
當電池溫度和電壓正確時快速充電開始。通常用1℃或更低的恒定電流對NiMH電池進行充電。一些NiCd電池可以用高達4C的速率進行充電。采用適當?shù)某潆娊K止來避免有害的過充電。
就鎳基可充電電池而言,快速充電終止基于電壓或溫度。如圖1所示,典型的電壓終止方法是峰值電壓探測,在峰值時即每個電池的電壓在0~-4mV范圍內(nèi),快速充電被終止?;跍囟鹊目焖俪潆娊K止方法是觀察電池溫度上升率T/t來探測完全充電。典型的T/t率為1℃/每分鐘。
圖1:鎳電池化學技術(shù)的充電曲線。
鋰離子/鋰聚合物電池
與NiCd電池和NiMH電池相類似,在快速充電之前盡可能檢驗并調(diào)節(jié)鋰離子電池。驗證和處理方法與上述使用的方法相類似。
如圖2所示,驗證和預處理之后,先用一個1C或更低的電流對鋰離子電池進行充電,直到電池達到其充電電壓極限為止。該充電階段通常會補充高達70%的電池容量。然后用一個通常為4.2V的恒定電壓對電池進行充電。為將安全性和電池容量,必須要將充電壓穩(wěn)定在至少1%。在此充電期間,電池汲取的充電電流逐漸下降。就1C充電率而言,一旦電流電平下降到初始充電電流的10-15%以下充電通常就會終止。
圖2:鋰離子電池化學技術(shù)充電曲線。
開關(guān)模式與線性充電拓撲的對比
傳統(tǒng)上來說,手持設備都使用線性充電拓撲。該方法具有諸多優(yōu)勢:低實施成本、設計簡捷以及無高頻開關(guān)的無噪聲運行。但是,線性拓撲會增加系統(tǒng)功耗,尤其是當電池容量更高引起的充電率增加的時候。如果設計人員無法管理設計的散熱問題,這就會成為一個主要缺點。
當PC USB端口作為電源時,則會出現(xiàn)其他一些缺點。當今在許多便攜式設計上都具有USB充電選項,并且都可提供高達500mA的充電率。就線性解決方案而言,由于其效率較低,可以從PC USB傳輸?shù)摹半娔堋绷烤捅淮蟠蠼档?,從而導致了充電時間過長。
這就是開關(guān)模式拓撲有用武之地的原因。開關(guān)模式拓撲的主要優(yōu)勢在于效率的提高。與線性穩(wěn)壓器不同,電源開關(guān)(或多個開關(guān))在飽和的區(qū)域內(nèi)運行,其大大降低了總體損耗。降壓轉(zhuǎn)換器*率損耗的主要包括開關(guān)損耗(在電源開關(guān)中)以及濾波電感中的DC損耗。根據(jù)設計參數(shù)的不同,在這些應用中出現(xiàn)效率大大高于 95%的情況就不足為奇了。
當人們聽到開關(guān)模式這個術(shù)語時大多數(shù)人都會想到大型IC、大PowerFET以及超大型電感!事實上,雖然對于處理數(shù)十安培電流的應用而言確實是這樣,但是對于手持設備的新一代解決方案而言情況就不一樣了。新一代單體鋰離子開關(guān)模式充電器采用了最高級別的芯片集成,高于1MHZ的使用頻率以最小化電感尺寸。圖1說明了當今市場上已開始銷售的此類解決方案。該硅芯片的尺寸不到4mm2,其集成了高側(cè)和低側(cè)PowerFET。由于采用了3MHz開關(guān)頻率,該解決方案要求一個小型1uH電感,其外形尺寸僅為:2mmx2.5mmx1.2mm(WxLxH)。
評論