欧美性猛交xxxx免费看_牛牛在线视频国产免费_天堂草原电视剧在线观看免费_国产粉嫩高清在线观看_国产欧美日本亚洲精品一5区

電子發(fā)燒友App

硬聲App

0
  • 聊天消息
  • 系統(tǒng)消息
  • 評(píng)論與回復(fù)
登錄后你可以
  • 下載海量資料
  • 學(xué)習(xí)在線課程
  • 觀看技術(shù)視頻
  • 寫文章/發(fā)帖/加入社區(qū)
創(chuàng)作中心

完善資料讓更多小伙伴認(rèn)識(shí)你,還能領(lǐng)取20積分哦,立即完善>

3天內(nèi)不再提示

電子發(fā)燒友網(wǎng)>人工智能>談Kaggle機(jī)器學(xué)習(xí)之模型融合

談Kaggle機(jī)器學(xué)習(xí)之模型融合

收藏

聲明:本文內(nèi)容及配圖由入駐作者撰寫或者入駐合作網(wǎng)站授權(quán)轉(zhuǎn)載。文章觀點(diǎn)僅代表作者本人,不代表電子發(fā)燒友網(wǎng)立場。文章及其配圖僅供工程師學(xué)習(xí)之用,如有內(nèi)容侵權(quán)或者其他違規(guī)問題,請聯(lián)系本站處理。 舉報(bào)投訴

評(píng)論

查看更多

相關(guān)推薦

Kaggle機(jī)器學(xué)習(xí)/數(shù)據(jù)科學(xué)現(xiàn)狀調(diào)查

Kaggle 是互聯(lián)網(wǎng)上最著名的數(shù)據(jù)科學(xué)競賽平臺(tái)之一,今年 3 月 8 日,這家機(jī)構(gòu)被谷歌收購,6 月 6 日又宣布用戶數(shù)量超過了 100 萬人。
2018-06-29 09:11:349600

機(jī)器學(xué)習(xí)模型類型分類

?機(jī)器學(xué)習(xí)按照模型類型分為監(jiān)督學(xué)習(xí)模型、無監(jiān)督學(xué)習(xí)模型兩大類。 1. 有監(jiān)督學(xué)習(xí) 有監(jiān)督學(xué)習(xí)通常是利用帶有專家標(biāo)注的標(biāo)簽的訓(xùn)練數(shù)據(jù),學(xué)習(xí)一個(gè)從輸入變量X到輸入變量Y的函數(shù)映射
2023-09-05 11:45:061161

機(jī)器學(xué)習(xí)模型評(píng)估指標(biāo)

機(jī)器學(xué)習(xí)模型指標(biāo)在機(jī)器學(xué)習(xí)建模過程中,針對不同的問題,需采用不同的模型評(píng)估指標(biāo)。
2023-09-06 12:51:50410

如何使用TensorFlow構(gòu)建機(jī)器學(xué)習(xí)模型

在這篇文章中,我將逐步講解如何使用 TensorFlow 創(chuàng)建一個(gè)簡單的機(jī)器學(xué)習(xí)模型。
2024-01-08 09:25:34272

kaggle住宅價(jià)格預(yù)測

kaggle房價(jià)實(shí)戰(zhàn)總結(jié)
2019-08-13 10:08:10

kaggle泰坦尼克生存預(yù)測實(shí)施步驟

數(shù)據(jù)分析-kaggle泰坦尼克號(hào)生存率分析(入門)個(gè)人總結(jié)
2019-09-05 15:36:07

機(jī)器學(xué)習(xí)偏差、方差,生成模型,判別模型,先驗(yàn)概率,后驗(yàn)概率

機(jī)器學(xué)習(xí):偏差、方差,生成模型,判別模型,先驗(yàn)概率,后驗(yàn)概率
2020-05-14 15:23:39

機(jī)器學(xué)習(xí)模型性能度量

機(jī)器學(xué)習(xí)模型的性能度量
2020-05-12 10:27:21

機(jī)器學(xué)習(xí)KNN介紹

機(jī)器學(xué)習(xí)(李航統(tǒng)計(jì)學(xué)方法)KNN
2020-04-07 16:20:24

機(jī)器學(xué)習(xí)與模式識(shí)別

本書將機(jī)器學(xué)習(xí)看成一個(gè)整體,不管于基于頻率的方法還是貝葉斯方法,不管是回歸模型還是分類模型,都只是一個(gè)問題的不同側(cè)面。作者能夠開啟上帝視角,將機(jī)器學(xué)習(xí)的林林總總都納入一張巨網(wǎng)之中
2019-03-18 08:30:00

機(jī)器學(xué)習(xí)與軟件平臺(tái)的融合

本文將探討機(jī)器學(xué)習(xí)與軟件平臺(tái)的融合。
2021-01-28 06:36:35

機(jī)器學(xué)習(xí)的分類器

各種機(jī)器學(xué)習(xí)的應(yīng)用場景分別是什么?例如,k近鄰,貝葉斯,決策樹,svm,邏輯斯蒂回歸和最大熵模型
2019-09-10 10:53:10

機(jī)器學(xué)習(xí)的創(chuàng)新/開發(fā)和應(yīng)用能力

機(jī)器學(xué)習(xí)的未來在工業(yè)領(lǐng)域采用機(jī)器學(xué)習(xí)機(jī)器學(xué)習(xí)和大數(shù)據(jù)工業(yè)人工智能生態(tài)系統(tǒng)
2020-12-16 07:47:35

機(jī)器學(xué)習(xí)的圖像壓縮應(yīng)用

DIY圖像壓縮——機(jī)器學(xué)習(xí)實(shí)戰(zhàn)K-means 聚類圖像壓縮:色彩量化
2019-08-19 07:07:18

機(jī)器學(xué)習(xí)的基礎(chǔ)內(nèi)容

系列文章目錄提示:這里可以添加系列文章的所有文章的目錄,目錄需要自己手動(dòng)添加例如:第一章 Python 機(jī)器學(xué)習(xí)入門pandas的使用提示:寫完文章后,目錄可以自動(dòng)生成,如何生成可參考右邊的幫助
2022-02-09 06:47:38

機(jī)器學(xué)習(xí)的未來

機(jī)器學(xué)習(xí)的未來在工業(yè)領(lǐng)域采用機(jī)器學(xué)習(xí)機(jī)器學(xué)習(xí)和大數(shù)據(jù)
2021-01-27 06:02:18

機(jī)器學(xué)習(xí)的樸素貝葉斯講解

秦剛剛的機(jī)器學(xué)習(xí)成長之路樸素貝葉斯法
2019-05-15 14:41:09

機(jī)器學(xué)習(xí)簡介與經(jīng)典機(jī)器學(xué)習(xí)算法人才培養(yǎng)

。遷移效果的可視化,利用機(jī)器學(xué)習(xí)庫scikit-learn中的t-SNE對遷移過后的高維數(shù)據(jù)進(jìn)行可視化。十、實(shí)驗(yàn)實(shí)操圖片與視頻風(fēng)格遷移實(shí)踐掌握基于生成對抗網(wǎng)絡(luò)的風(fēng)格遷移技術(shù)。圖像/視頻風(fēng)格遷移網(wǎng)絡(luò)
2022-04-28 18:56:07

機(jī)器學(xué)習(xí)隨機(jī)森林相關(guān)知識(shí)

機(jī)器學(xué)習(xí)隨機(jī)森林(三)
2019-04-02 10:06:01

AI芯片算法不談智能,實(shí)現(xiàn)不談芯片!

個(gè)人認(rèn)為是誤解的第三個(gè)理解作為立腳點(diǎn)開始向后繼續(xù)。 這個(gè)被王飛躍評(píng)價(jià)為不存在的AI芯片,不過是上述狹義的機(jī)器學(xué)習(xí)派系中大量算法的不同的實(shí)現(xiàn)方式罷了。我們與其去用硬件作為AI算法載體的芯片是否存在,不如去講
2018-08-24 10:36:53

DataWhale一周算法進(jìn)階3模型融合

DataWhale一周算法進(jìn)階3---模型融合
2020-06-08 12:23:07

Django模型

Django模型(二)
2020-05-29 10:01:49

MLECS:利用ECS的PAI進(jìn)行傻瓜式操作機(jī)器學(xué)習(xí)的算法

MLECS:利用ECS的PAI進(jìn)行傻瓜式操作機(jī)器學(xué)習(xí)的算法
2018-12-20 10:42:02

Python機(jī)器學(xué)習(xí)入門pandas的使用提示

系列文章目錄提示:這里可以添加系列文章的所有文章的目錄,目錄需要自己手動(dòng)添加例如:第一章 Python 機(jī)器學(xué)習(xí)入門pandas的使用提示:寫完文章后,目錄可以自動(dòng)生成,如何生成可參考右邊的幫助
2021-08-13 07:36:45

Python機(jī)器學(xué)習(xí)常用庫

分布和模型收斂的診斷工具,也包含一些層次模型。四、GensimGensim被稱為“人們的主題建模工具”,其焦點(diǎn)是狄利克雷劃分及變體,其支持自然語言處理,能將NLP和其他機(jī)器學(xué)習(xí)算法更容易組合在一起,還
2018-03-26 16:29:41

STM32學(xué)習(xí)SPI如何控制TFT

STM32學(xué)習(xí)SPI如何控制TFT
2021-10-13 08:29:56

qiuzitao機(jī)器學(xué)習(xí):桑坦德銀行客戶交易預(yù)測項(xiàng)目

數(shù)據(jù)挖掘?qū)崙?zhàn)–桑坦德銀行客戶交易預(yù)測項(xiàng)目一、項(xiàng)目介紹:這是2019年Kaggle的比賽:kaggle官網(wǎng): https://www.kaggle.com/c
2021-07-01 10:14:40

《移動(dòng)終端人工智能技術(shù)與應(yīng)用開發(fā)》+理論學(xué)習(xí)

收到《移動(dòng)終端人工智能技術(shù)與應(yīng)用開發(fā)》有一段時(shí)間了,由于時(shí)間有限,加上工作原因,目前只看到第3章,前幾章主要介紹人工智能和機(jī)器學(xué)習(xí)的基礎(chǔ)知識(shí),發(fā)展歷程,分類等,重點(diǎn)說明了,在移動(dòng)終端上如何實(shí)現(xiàn)人工
2023-02-27 23:28:20

【下載】《機(jī)器學(xué)習(xí)》+《機(jī)器學(xué)習(xí)實(shí)戰(zhàn)》

  312索引  313版權(quán)聲明  316工程師和數(shù)據(jù)科學(xué)家處理大量各種格式(如傳感器、圖像、視頻、遙測、數(shù)據(jù)庫等)的數(shù)據(jù)。他們使用機(jī)器學(xué)習(xí)來尋找數(shù)據(jù)中的模式,并建立基于歷史數(shù)據(jù)預(yù)測未來結(jié)果的模型
2017-06-01 15:49:24

什么是機(jī)器學(xué)習(xí)? 機(jī)器學(xué)習(xí)基礎(chǔ)入門

另一方面,機(jī)器學(xué)習(xí)是向計(jì)算機(jī)提供一組輸入和輸出,并要求計(jì)算機(jī)識(shí)別“算法”(或用機(jī)器學(xué)習(xí)的說法稱為模型)的過程,這種算法每次都將這些輸入轉(zhuǎn)化為輸出。通常,這需要大量的輸入,以確保模型每次都能正確地識(shí)別正確
2022-06-21 11:06:37

什么是TinyML?微型機(jī)器學(xué)習(xí)

的領(lǐng)域,它幾乎滲透到我們與互動(dòng)的每一個(gè)數(shù)字事物中,無論是社交媒體、手機(jī)、汽車,甚至是家用電器。盡管如此,仍然有許多機(jī)器學(xué)習(xí)想要去的地方,但是它們很難到達(dá)。這是因?yàn)樵S多最先進(jìn)的機(jī)器學(xué)習(xí)模型需要大量的計(jì)算
2022-04-12 10:20:35

介紹機(jī)器學(xué)習(xí)的基礎(chǔ)內(nèi)容

嵌入式系統(tǒng)硬件總復(fù)習(xí)提示:這里可以添加系列文章的所有文章的目錄,目錄需要自己手動(dòng)添加例如:第一章 Python 機(jī)器學(xué)習(xí)入門pandas的使用提示:寫完文章后,目錄可以自動(dòng)生成,如何生成可
2021-12-16 06:27:44

介紹機(jī)器學(xué)習(xí)的基礎(chǔ)內(nèi)容

系列文章目錄提示:這里可以添加系列文章的所有文章的目錄,目錄需要自己手動(dòng)添加例如:第一章 Python 機(jī)器學(xué)習(xí)入門pandas的使用提示:寫完文章后,目錄可以自動(dòng)生成,如何生成可參考右邊的幫助
2021-08-13 07:39:46

從利用認(rèn)知 API 到構(gòu)建出自定義的機(jī)器學(xué)習(xí)模型面臨哪些挑戰(zhàn)?

如果你從西雅圖駕車往東行,要不了多久就會(huì)看到風(fēng)力發(fā)電機(jī)組。這些巨大的機(jī)器遍布在連綿起伏的丘陵和平原上,從刮過其間從不間斷的風(fēng)中生產(chǎn)電力。其中每一臺(tái)風(fēng)機(jī)都會(huì)生成海量的數(shù)據(jù)。這些數(shù)據(jù)被用于強(qiáng)化機(jī)器學(xué)習(xí)
2021-07-12 06:19:05

使用 Python 開始機(jī)器學(xué)習(xí)

的運(yùn)行速度跟它的低層語言實(shí)現(xiàn)的運(yùn)行速度相比擬的。你沒有必要擔(dān)心程序的運(yùn)行速度。值得知道的Python程序庫Scikit-learn你剛開始學(xué)機(jī)器學(xué)習(xí)嗎?如果你需要一個(gè)涵蓋了特征工程,模型訓(xùn)練和模型測試所有
2018-12-11 18:37:19

加速度計(jì)和陀螺儀的數(shù)學(xué)模型和基本算法是什么?如何進(jìn)行融合?

加速度計(jì)和陀螺儀的數(shù)學(xué)模型和基本算法是什么?如何進(jìn)行融合
2021-11-12 07:15:08

如何通過cube-ai擴(kuò)展將機(jī)器學(xué)習(xí)模型部署到STM32H743ZIT6?

我正在嘗試通過 cube-ai 擴(kuò)展將機(jī)器學(xué)習(xí)模型部署到 STM32H743ZIT6。該模型采用 .tflite 格式。當(dāng)我嘗試分析模型時(shí),結(jié)果如下:該工具指出 MCU 總共有 512KB 可用,模型超過了它,但在數(shù)據(jù)表上我發(fā)現(xiàn)有 1024KB。什么原因?
2022-12-30 08:57:53

微型機(jī)器學(xué)習(xí)

人工智能 AI 正在加快速度從云端走向邊緣,進(jìn)入到越來越小的物聯(lián)網(wǎng)設(shè)備中。而這些物聯(lián)網(wǎng)設(shè)備往往體積很小,面臨著許多挑戰(zhàn),例如功耗、延時(shí)以及精度等問題,傳統(tǒng)的機(jī)器學(xué)習(xí)模型無法滿足要求,那么微型機(jī)器學(xué)習(xí)又如何呢?
2021-09-15 09:23:12

最值得學(xué)習(xí)機(jī)器學(xué)習(xí)編程語言

如果你對人工智能和機(jī)器學(xué)習(xí)感興趣,而且正在積極地規(guī)劃著自己的程序員職業(yè)生涯,那么你肯定面臨著一個(gè)問題:你應(yīng)該學(xué)習(xí)哪些編程語言,才能真正了解并掌握 AI 和機(jī)器學(xué)習(xí)?可供選擇的語言很多,你需要通過戰(zhàn)略
2021-03-02 06:22:38

深度融合模型的特點(diǎn)

深度融合模型的特點(diǎn),背景深度學(xué)習(xí)模型在訓(xùn)練完成之后,部署并應(yīng)用在生產(chǎn)環(huán)境的這一步至關(guān)重要,畢竟訓(xùn)練出來的模型不能只接受一些公開數(shù)據(jù)集和榜單的檢驗(yàn),還需要在真正的業(yè)務(wù)場景下創(chuàng)造價(jià)值,不能只是為了PR而
2021-07-16 06:08:20

請問labview可以調(diào)用在matlab里訓(xùn)練出的機(jī)器學(xué)習(xí)模型嗎?可以的話應(yīng)該怎么做?

我想用labview做一個(gè)數(shù)據(jù)采集上位機(jī),下位機(jī)采集來的數(shù)據(jù)通過串口傳到上位機(jī),之后把數(shù)據(jù)輸入機(jī)器學(xué)習(xí)模型中進(jìn)行分類。聽說可以用matlabscript,但是我看在matlab里使用模型時(shí)都是用的函數(shù),比如predict()或是sim(),這些函數(shù)也可以在matlabscript里調(diào)用嗎?
2018-03-21 23:20:24

談一 MPU6050 姿態(tài)融合

談一 MPU6050 姿態(tài)融合
2020-05-05 09:28:07

軟體機(jī)器人學(xué)習(xí)問題探討

,學(xué)習(xí)并探討軟體機(jī)器人結(jié)構(gòu)設(shè)計(jì)、柔性制造、運(yùn)動(dòng)控制、裝配和調(diào)試等內(nèi)容,使學(xué)員熟練應(yīng)用控制工程理論、自動(dòng)化、材料力學(xué)、機(jī)械原理、機(jī)械設(shè)計(jì)、3D打印等基礎(chǔ)知識(shí),培養(yǎng)和提高學(xué)員對軟體機(jī)器人目標(biāo)分析、模型建立、設(shè)計(jì)制作和實(shí)驗(yàn)測試的能力;
2019-08-12 15:09:17

遷移學(xué)習(xí)

的領(lǐng)域適配。遷移效果的可視化,利用機(jī)器學(xué)習(xí)庫scikit-learn中的t-SNE對遷移過后的高維數(shù)據(jù)進(jìn)行可視化。十、實(shí)驗(yàn)實(shí)操圖片與視頻風(fēng)格遷移實(shí)踐掌握基于生成對抗網(wǎng)絡(luò)的風(fēng)格遷移技術(shù)。圖像/視頻風(fēng)格
2022-04-21 15:15:11

部署基于嵌入的機(jī)器學(xué)習(xí)模型

1、如何在生產(chǎn)中部署基于嵌入的機(jī)器學(xué)習(xí)模型  由于最近大量的研究,機(jī)器學(xué)習(xí)模型的性能在過去幾年里有了顯著的提高。雖然這些改進(jìn)的模型開辟了新的可能性,但是它們只有在可以部署到生產(chǎn)應(yīng)用中時(shí)才開始提供真正
2022-11-02 15:09:52

#硬聲創(chuàng)作季 #機(jī)器學(xué)習(xí) 機(jī)器學(xué)習(xí)-6.2.1 邏輯斯蒂回歸模型

模型機(jī)器學(xué)習(xí)
水管工發(fā)布于 2022-11-04 11:17:42

#硬聲創(chuàng)作季 #機(jī)器學(xué)習(xí) 機(jī)器學(xué)習(xí)-6.3.1 最大熵模型

模型機(jī)器學(xué)習(xí)
水管工發(fā)布于 2022-11-04 11:18:36

#硬聲創(chuàng)作季 #機(jī)器學(xué)習(xí) 機(jī)器學(xué)習(xí)-7.4.1 隱馬爾可夫模型-1

模型機(jī)器學(xué)習(xí)
水管工發(fā)布于 2022-11-04 11:22:37

#硬聲創(chuàng)作季 #機(jī)器學(xué)習(xí) 機(jī)器學(xué)習(xí)-7.4.1 隱馬爾可夫模型-2

模型機(jī)器學(xué)習(xí)
水管工發(fā)布于 2022-11-04 11:23:01

機(jī)器學(xué)習(xí)模型注入持久性

簡介 研究機(jī)器學(xué)習(xí)用例: 數(shù)據(jù)科學(xué)家建立了一個(gè)ML模型,并交給了一個(gè)工程團(tuán)隊(duì)在生產(chǎn)環(huán)境部署。數(shù)據(jù)工程師將使用Python的模型訓(xùn)練工作流和Java模型服務(wù)工作流整合。數(shù)據(jù)科學(xué)家專門設(shè)立崗位來訓(xùn)練后期
2017-10-10 14:27:150

機(jī)器學(xué)習(xí)模型評(píng)估和優(yōu)化

監(jiān)督學(xué)習(xí)的主要任務(wù)就是用模型實(shí)現(xiàn)精準(zhǔn)的預(yù)測。我們希望自己的機(jī)器學(xué)習(xí)模型在新數(shù)據(jù)(未被標(biāo)注過的)上取得盡可能高的準(zhǔn)確率。換句話說,也就是我們希望用訓(xùn)練數(shù)據(jù)訓(xùn)練得到的模型能適用于待測試的新數(shù)據(jù)。正是這樣
2017-10-12 15:33:420

深度探究機(jī)器學(xué)習(xí)與圖像融合的技術(shù)基于TOF硬件平臺(tái)的技術(shù)應(yīng)用

立足當(dāng)下,面向未來。青識(shí)智能深度探究機(jī)器學(xué)習(xí)與圖像融合的技術(shù)基于TOF硬件平臺(tái)的技術(shù)應(yīng)用(創(chuàng)新性開發(fā)多TOF矩陣產(chǎn)品,在傳統(tǒng)TOF基礎(chǔ)上增加機(jī)器學(xué)習(xí)算法和圖形圖像融合、建模技術(shù))。
2018-04-29 16:35:004553

Kaggle沒有否認(rèn)將被谷歌收購

科技博客TechCrunch援引消息人士報(bào)道稱,谷歌正在收購Kaggle —— 一個(gè)舉辦數(shù)據(jù)科學(xué)和機(jī)器學(xué)習(xí)競賽的平臺(tái)。有關(guān)此次交易的詳細(xì)信息目前還未披露,但是考慮到谷歌本周在舊金山召開Cloud Next云技術(shù)大會(huì),官方消息很可能會(huì)在明天公布。
2018-05-08 08:58:00564

自學(xué)機(jī)器學(xué)習(xí)的誤區(qū)和陷阱

/數(shù)據(jù)科學(xué)工具包,上文介紹的Python Machine Learning書中就大量使用Sklearn的API。和使用Kaggle的目的一致,學(xué)習(xí)的Sklearn的文檔也是一種實(shí)踐過程。比較推薦的方法是把主流機(jī)器學(xué)習(xí)模型Sklearn中的例子都看一遍
2018-05-14 15:54:324514

使用 Featuretools庫來了解自動(dòng)化特征工程如何改變并優(yōu)化機(jī)器學(xué)習(xí)的工作方式

來看下完整的數(shù)據(jù)集,可以看到分布在七張表中有 5800 萬行數(shù)據(jù),而機(jī)器學(xué)習(xí)方法需要針對一張表進(jìn)行模型訓(xùn)練。此時(shí),特征工程就需要將每個(gè)客戶的所有信息提取并融合到一個(gè)表中。
2018-09-05 09:17:047764

谷歌新推無程式碼機(jī)器學(xué)習(xí)模型分析工具

機(jī)器學(xué)習(xí)模型訓(xùn)練完成后,需要經(jīng)過反覆的探索調(diào)校,What-If Tool不需撰寫任何程式碼,就能探索機(jī)器學(xué)習(xí)模型,讓非開發(fā)人員眼能參與模型調(diào)校工作。
2018-09-14 14:47:282321

一種新穎的基于模型機(jī)器學(xué)習(xí)方式——model based machine learning

還有很多各式各樣的疑問充滿了機(jī)器學(xué)習(xí)的歷程和工程實(shí)踐中。但這本書為我們帶來了一個(gè)對機(jī)器視覺的全新視角:model-based 機(jī)器學(xué)習(xí)?;?b class="flag-6" style="color: red">模型的機(jī)器學(xué)習(xí)將會(huì)給你不同的視角解答上面的問題,并將幫助你創(chuàng)造出更加有效的算法,當(dāng)然算法也更加透明。
2018-10-21 10:50:135773

Waymo用AutoML自動(dòng)生成機(jī)器學(xué)習(xí)模型

Waymo十周年之際,發(fā)布了自動(dòng)駕駛機(jī)器學(xué)習(xí)模型的構(gòu)建思路,原來很多內(nèi)部架構(gòu)是由 AutoML 完成的。
2019-01-19 09:05:413036

機(jī)器學(xué)習(xí)教程之線性模型的詳細(xì)資料說明

本文檔的主要內(nèi)容詳細(xì)介紹的是機(jī)器學(xué)習(xí)教程之線性模型的詳細(xì)資料說明。
2020-03-24 08:00:000

機(jī)器學(xué)習(xí)模型評(píng)估與選擇詳細(xì)資料說明

本文檔的主要內(nèi)容詳細(xì)介紹的是機(jī)器學(xué)習(xí)模型評(píng)估與選擇詳細(xì)資料說明。
2020-03-24 08:00:000

機(jī)器學(xué)習(xí)模型再訓(xùn)練的指南詳細(xì)概述

機(jī)器學(xué)習(xí)模型的訓(xùn)練,通常是通過學(xué)習(xí)某一組輸入特征與輸出目標(biāo)之間的映射來進(jìn)行的。一般來說,對于映射的學(xué)習(xí)是通過優(yōu)化某些成本函數(shù),來使預(yù)測的誤差最小化。在訓(xùn)練出最佳模型之后,將其正式發(fā)布上線,再根據(jù)未來
2020-04-10 08:00:000

機(jī)器學(xué)習(xí)模型切實(shí)可行的優(yōu)化步驟

這篇文章提供了可以采取的切實(shí)可行的步驟來識(shí)別和修復(fù)機(jī)器學(xué)習(xí)模型的訓(xùn)練、泛化和優(yōu)化問題。
2020-05-04 12:08:002347

機(jī)器學(xué)習(xí)模型在生產(chǎn)中退化的原因

由于意外的機(jī)器學(xué)習(xí)模型退化導(dǎo)致了幾個(gè)機(jī)器學(xué)習(xí)項(xiàng)目的失敗,我想分享一下我在機(jī)器學(xué)習(xí)模型退化方面的經(jīng)驗(yàn)。實(shí)際上,有很多關(guān)于模型創(chuàng)建和開發(fā)階段的宣傳,而不是模型維護(hù)。
2020-05-04 12:11:001615

機(jī)器學(xué)習(xí)的隨機(jī)森林算法簡介

幾個(gè)月前,我在悉尼參加了一個(gè)會(huì)議。會(huì)上fast.ai向我介紹了一門在線機(jī)器學(xué)習(xí)課程,那時(shí)候我根本沒注意。這周在Kaggle競賽尋找提高分?jǐn)?shù)的方法時(shí),我又遇到了這門課程。我決定試一試。
2020-05-05 08:50:002243

機(jī)器學(xué)習(xí)模型評(píng)估的11個(gè)指標(biāo)

建立機(jī)器學(xué)習(xí)模型的想法是基于一個(gè)建設(shè)性的反饋原則。你構(gòu)建一個(gè)模型,從指標(biāo)中獲得反饋,進(jìn)行改進(jìn),直到達(dá)到理想的精度為止。評(píng)估指標(biāo)解釋了模型的性能。評(píng)估指標(biāo)的一個(gè)重要方面是它們區(qū)分模型結(jié)果的能力。
2020-05-04 10:04:002969

詳談機(jī)器學(xué)習(xí)的決策樹模型

決策樹模型是白盒模型的一種,其預(yù)測結(jié)果可以由人來解釋。我們把機(jī)器學(xué)習(xí)模型的這一特性稱為可解釋性,但并不是所有的機(jī)器學(xué)習(xí)模型都具有可解釋性。
2020-07-06 09:49:063073

理解機(jī)器學(xué)習(xí)中的算法與模型

對于初學(xué)者來說,這很容易讓人混淆,因?yàn)椤?b class="flag-6" style="color: red">機(jī)器學(xué)習(xí)算法”經(jīng)常與“機(jī)器學(xué)習(xí)模型”交替使用。這兩個(gè)到底是一樣的東西呢,還是不一樣的東西?作為開發(fā)人員,你對排序算法、搜索算法等“算法”的直覺,將有助于你厘清這個(gè)困惑。在本文中,我將闡述機(jī)器學(xué)習(xí)“算法”和“模型”之間的區(qū)別。
2020-07-31 15:38:083347

淺談機(jī)器學(xué)習(xí)模型的可解釋性和透明性

對于機(jī)器學(xué)習(xí)模型來說,我們常常會(huì)提到2個(gè)概念:模型準(zhǔn)確性(accuracy)和模型復(fù)雜度(complexity)。
2021-01-05 14:02:282825

如何才能正確的構(gòu)建機(jī)器學(xué)習(xí)模型

組織構(gòu)建一個(gè)可行的、可靠的、敏捷的機(jī)器學(xué)習(xí)模型來簡化操作和支持其業(yè)務(wù)計(jì)劃需要耐心、準(zhǔn)備以及毅力。各種組織都在為各行業(yè)中的眾多應(yīng)用實(shí)施人工智能項(xiàng)目。這些應(yīng)用包括預(yù)測分析、模式識(shí)別系統(tǒng)、自主系統(tǒng)、會(huì)話
2021-01-11 19:25:0014

Kaggle神器LightGBM的最全解讀

1. LightGBM簡介 GBDT (Gradient Boosting Decision Tree) 是機(jī)器學(xué)習(xí)中一個(gè)長盛不衰的模型,其主要思想是利用弱分類器(決策樹)迭代訓(xùn)練以得到最優(yōu)模型
2021-01-05 14:27:352645

機(jī)器學(xué)習(xí)中的無模型強(qiáng)化學(xué)習(xí)算法及研究綜述

強(qiáng)化學(xué)習(xí)( Reinforcement learning,RL)作為機(jī)器學(xué)習(xí)領(lǐng)域中與監(jiān)督學(xué)習(xí)、無監(jiān)督學(xué)習(xí)并列的第三種學(xué)習(xí)范式,通過與環(huán)境進(jìn)行交互來學(xué)習(xí),最終將累積收益最大化。常用的強(qiáng)化學(xué)習(xí)算法分為
2021-04-08 11:41:5811

一種可分享數(shù)據(jù)和機(jī)器學(xué)習(xí)模型的區(qū)塊鏈

機(jī)器學(xué)習(xí)開始在越來越多的行業(yè)中得到應(yīng)用,但使用機(jī)器學(xué)習(xí)執(zhí)行任務(wù)的軟件一直受限于第三方軟件商更新模型文中基于區(qū)塊鏈,將訓(xùn)練神經(jīng)網(wǎng)絡(luò)消耗的算力和區(qū)塊鏈的工作量證明機(jī)制相結(jié)合,提出并實(shí)現(xiàn)了模型鏈。模型
2021-04-14 16:09:2615

詳談機(jī)器學(xué)習(xí)模型算法的質(zhì)量保障方案

近年來,機(jī)器學(xué)習(xí)模型算法在越來越多的工業(yè)實(shí)踐中落地。在滴滴,大量線上策略由常規(guī)算法遷移到機(jī)器學(xué)習(xí)模型算法。如何搭建機(jī)器學(xué)習(xí)模型算法的質(zhì)量保障體系成為質(zhì)量團(tuán)隊(duì)急需解決的問題之一。本文整體介紹了機(jī)器學(xué)習(xí)模型算法的質(zhì)量保障方案,并進(jìn)一步給出了滴滴質(zhì)量團(tuán)隊(duì)在機(jī)器學(xué)習(xí)模型效果評(píng)測方面的部分探索實(shí)踐。
2021-05-05 17:08:002010

六個(gè)構(gòu)建機(jī)器學(xué)習(xí)模型需避免的錯(cuò)誤

近年來,機(jī)器學(xué)習(xí)在學(xué)術(shù)研究領(lǐng)域和實(shí)際應(yīng)用領(lǐng)域得到越來越多的關(guān)注。但構(gòu)建機(jī)器學(xué)習(xí)模型不是一件簡單的事情,它需要大量的知識(shí)和技能以及豐富的經(jīng)驗(yàn),才能使模型在多種場景下發(fā)揮功效。正確的機(jī)器學(xué)習(xí)模型要以數(shù)據(jù)
2021-05-05 16:39:001238

如何從13個(gè)Kaggle比賽中挑選出的最好的Kaggle kernel

。機(jī)器學(xué)習(xí)和圖像分類也不例外,工程師們可以通過參加像Kaggle這樣的競賽來展示最佳實(shí)踐。在這篇文章中,我將給你很多資源來學(xué)習(xí),聚焦于從13個(gè)Kaggle比賽中挑選出的最好的Kaggle kernel。 這些比賽是: Intel Image Classification:https://w
2021-06-27 09:26:541814

基于終身機(jī)器學(xué)習(xí)的主題挖掘評(píng)分和評(píng)論推薦模型

基于終身機(jī)器學(xué)習(xí)的主題挖掘評(píng)分和評(píng)論推薦模型
2021-06-27 15:34:3742

2021年OPPO開發(fā)者大會(huì) 融合知識(shí)的NLP預(yù)訓(xùn)練大模型

2021年OPPO開發(fā)者大會(huì)劉海鋒:融合知識(shí)的NLP預(yù)訓(xùn)練大模型,知識(shí)融合學(xué)習(xí)運(yùn)用在小布助手里面。
2021-10-27 14:48:162251

關(guān)于機(jī)器學(xué)習(xí)模型的六大可解釋性技術(shù)

本文介紹目前常見的幾種可以提高機(jī)器學(xué)習(xí)模型的可解釋性的技術(shù)。
2022-02-26 17:20:191831

機(jī)器學(xué)習(xí)模型的可解釋性算法詳解

本文介紹目前常見的幾種可以提高機(jī)器學(xué)習(xí)模型的可解釋性的技術(shù),包括它們的相對優(yōu)點(diǎn)和缺點(diǎn)。
2022-02-16 16:21:313986

機(jī)器學(xué)習(xí)領(lǐng)域,數(shù)據(jù)和模型哪個(gè)更重要

機(jī)器學(xué)習(xí)領(lǐng)域,數(shù)據(jù)重要還是模型重要?這是一個(gè)很難回答的問題。
2022-03-24 14:16:151820

超詳細(xì)配置教程:用Windows電腦訓(xùn)練深度學(xué)習(xí)模型

雖然大多數(shù)深度學(xué)習(xí)模型都是在 Linux 系統(tǒng)上訓(xùn)練的,但 Windows 也是一個(gè)非常重要的系統(tǒng),也可能是很多機(jī)器學(xué)習(xí)初學(xué)者更為熟悉的系統(tǒng)。要在 Windows 上開發(fā)模型,首先當(dāng)然是配置開發(fā)環(huán)境
2022-11-08 10:57:441101

使用TensorBoard的機(jī)器學(xué)習(xí)模型分析

機(jī)器學(xué)習(xí)正在突飛猛進(jìn)地發(fā)展,新的神經(jīng)網(wǎng)絡(luò)模型定期出現(xiàn)。這些模型針對特定數(shù)據(jù)集進(jìn)行了訓(xùn)練,并經(jīng)過了準(zhǔn)確性和處理速度的證明。開發(fā)人員需要評(píng)估 ML 模型,并確保它在部署之前滿足預(yù)期的特定閾值和功能
2022-12-06 14:35:10456

可以提高機(jī)器學(xué)習(xí)模型的可解釋性技術(shù)

本文介紹目前常見的幾種可以提高機(jī)器學(xué)習(xí)模型的可解釋性的技術(shù),包括它們的相對優(yōu)點(diǎn)和缺點(diǎn)。
2023-02-08 14:08:52861

模型為什么是深度學(xué)習(xí)的未來?

與傳統(tǒng)機(jī)器學(xué)習(xí)相比,深度學(xué)習(xí)是從數(shù)據(jù)中學(xué)習(xí),而大模型則是通過使用大量的模型來訓(xùn)練數(shù)據(jù)。深度學(xué)習(xí)可以處理任何類型的數(shù)據(jù),例如圖片、文本等等;但是這些數(shù)據(jù)很難用機(jī)器完成。大模型可以訓(xùn)練更多類別、多個(gè)級(jí)別的模型,因此可以處理更廣泛的類型。另外:在使用大模型時(shí),可能需要一個(gè)更全面或復(fù)雜的數(shù)學(xué)和數(shù)值計(jì)算的支持。
2023-02-16 11:32:371605

如何評(píng)估機(jī)器學(xué)習(xí)模型的性能?機(jī)器學(xué)習(xí)的算法選擇

如何評(píng)估機(jī)器學(xué)習(xí)模型的性能?典型的回答可能是:首先,將訓(xùn)練數(shù)據(jù)饋送給學(xué)習(xí)算法以學(xué)習(xí)一個(gè)模型。第二,預(yù)測測試集的標(biāo)簽。第三,計(jì)算模型對測試集的預(yù)測準(zhǔn)確率。
2023-04-04 14:15:19549

支持 ChatGPT 的機(jī)器學(xué)習(xí)模型的概況

本文介紹了支持 ChatGPT 的機(jī)器學(xué)習(xí)模型的概況,文章將從大型語言模型的介紹開始,深入探討用來訓(xùn)練 GPT-3 的革命性自我注意機(jī)制,然后深入研究由人類反饋的強(qiáng)化學(xué)習(xí)機(jī)制這項(xiàng)讓 ChatGPT 與眾不同的新技術(shù)。
2023-05-26 11:44:32541

使用機(jī)器學(xué)習(xí)模型(AI)進(jìn)行預(yù)測是否安全

電子發(fā)燒友網(wǎng)站提供《使用機(jī)器學(xué)習(xí)模型(AI)進(jìn)行預(yù)測是否安全.zip》資料免費(fèi)下載
2023-06-14 11:04:240

機(jī)器學(xué)習(xí)模型的集成方法總結(jié):Bagging, Boosting, Stacking, Voting, Blending

來源:DeepHubIMBA作者:AbhayParashar機(jī)器學(xué)習(xí)是人工智能的一個(gè)分支領(lǐng)域,致力于構(gòu)建自動(dòng)學(xué)習(xí)和自適應(yīng)的系統(tǒng),它利用統(tǒng)計(jì)模型來可視化、分析和預(yù)測數(shù)據(jù)。一個(gè)通用的機(jī)器學(xué)習(xí)模型包括
2022-10-19 11:29:21528

機(jī)器學(xué)習(xí)模型:用于使用邊緣脈沖軟件預(yù)測大象的行為

電子發(fā)燒友網(wǎng)站提供《機(jī)器學(xué)習(xí)模型:用于使用邊緣脈沖軟件預(yù)測大象的行為.zip》資料免費(fèi)下載
2023-06-29 14:47:350

機(jī)器學(xué)習(xí)構(gòu)建ML模型實(shí)踐

實(shí)踐中的機(jī)器學(xué)習(xí):構(gòu)建 ML 模型
2023-07-05 16:30:36412

如何有效地監(jiān)控生產(chǎn)中的機(jī)器學(xué)習(xí)模型

監(jiān)控生產(chǎn)中的機(jī)器學(xué)習(xí)模型指南
2023-07-05 16:30:38249

機(jī)器學(xué)習(xí)和深度學(xué)習(xí)的區(qū)別

  機(jī)器學(xué)習(xí)是一種方法,利用算法來讓機(jī)器可以自我學(xué)習(xí)和適應(yīng),而且不需要明確地編程。在許多應(yīng)用中,需要機(jī)器使用歷史數(shù)據(jù)訓(xùn)練模型,然后使用該模型來對新數(shù)據(jù)進(jìn)行預(yù)測或分類
2023-08-02 17:36:34333

機(jī)器學(xué)習(xí)算法匯總 機(jī)器學(xué)習(xí)算法分類 機(jī)器學(xué)習(xí)算法模型

機(jī)器學(xué)習(xí)算法匯總 機(jī)器學(xué)習(xí)算法分類 機(jī)器學(xué)習(xí)算法模型 機(jī)器學(xué)習(xí)是人工智能的分支之一,它通過分析和識(shí)別數(shù)據(jù)模式,學(xué)習(xí)從中提取規(guī)律,并用于未來的決策和預(yù)測。在機(jī)器學(xué)習(xí)中,算法是最基本的組成部分之一。算法
2023-08-17 16:11:48632

機(jī)器學(xué)習(xí)theta是什么?機(jī)器學(xué)習(xí)tpe是什么?

解一下theta。在機(jī)器學(xué)習(xí)中,theta通常表示模型的參數(shù)。在回歸問題中,theta可能表示線性回歸的斜率和截距;在分類問題中,theta可能表示多項(xiàng)式模型的各項(xiàng)系數(shù)。這些參數(shù)通常是通過訓(xùn)練數(shù)據(jù)自動(dòng)學(xué)習(xí)得到的,而不是手工設(shè)置的。 在機(jī)器學(xué)習(xí)中,優(yōu)化theta是一
2023-08-17 16:30:081023

已全部加載完成