資料介紹
無人駕駛汽車的成功涉及高精地圖、實時定位以及障礙物檢測等多項技術,而這些技術都離不開光學雷達(LiDAR)。本文將深入解析光學雷達是如何被廣泛應用到無人車的各項技術中。文章首先介紹光學雷達的工作原理,包括如何通過激光掃描出點云;然后詳細解釋光學雷達在無人駕駛技術中的應用,包括地圖繪制、定位以及障礙物檢測;最后討論光學雷達技術目前面臨的挑戰(zhàn),包括外部環(huán)境干擾、數(shù)據(jù)量大、成本高等問題。
無人駕駛技術簡介
無人駕駛技術是多個技術的集成,包括了傳感器、定位與深度學習、高精地圖、路徑規(guī)劃、障礙物檢測與規(guī)避、機械控制、系統(tǒng)集成與優(yōu)化、能耗與散熱管理等等。雖然現(xiàn)有的多種無人車在實現(xiàn)上有許多不同,但是在系統(tǒng)架構上都大同小異。圖1顯示了無人車的通用系統(tǒng)架構,系統(tǒng)的感知端(圖1左)由不同的傳感器組成,其中GPS用于定位,光學雷達(Light Detection And Ranging,簡稱 LiDAR)用于定位以及障礙物檢測,照相機用于基于深度學習的物體識別以及定位輔助。
![無人駕駛之光學雷達技術探究](/uploads/allimg/171010/2362486-1G0101FPBL.png)
圖1 無人車通用系統(tǒng)架構
在傳感器信息采集后,我們進入了感知階段,主要是定位與物體識別(圖1中)。在這個階段,我們可以用數(shù)學的方法,比如Kalman Filter與 Particle Filter等算法,對各種傳感器信息進行融合,得出當前最大幾率的位置。如果使用LiDAR為主要的定位傳感器,我們可以通過LiDAR掃描回來的信息跟已知的高精地圖做對比,得出當前的車輛位置。如果沒有地圖,我們甚至可以把當前的LiDAR掃描信息與之前的掃描信息用ICP算法做對比,推算出當前的車輛位置。在得出基于LiDAR的位置預測后,可以用數(shù)學方法與其它傳感器信息進行融合,推算出更精準的位置信息。
最后,我們進入了計劃與控制階段(圖1右)。在這個階段,我們根據(jù)位置信息以及識別出的圖像信息(如紅綠燈)實時調節(jié)車輛的行車計劃,并把行車計劃轉化成控制信號操控車輛。全局的路徑規(guī)劃可以用類似A-Star的算法實現(xiàn),本地的路徑規(guī)劃可以用DWA等算法實現(xiàn)。
光學雷達基礎知識
先來了解下光學雷達的工作原理,特別是產生點云的過程。
工作原理
光學雷達是一種光學遙感技術,它通過首先向目標物體發(fā)射一束激光,再根據(jù)接收-反射的時間間隔來確定目標物體的實際距離。然后根據(jù)距離及激光發(fā)射的角度,通過簡單的幾何變化可以推導出物體的位置信息。由于激光的傳播受外界影響小,LiDAR能夠檢測的距離一般可達100m以上。與傳統(tǒng)雷達使用無線電波相比較,LiDAR使用激光射線,商用LiDAR使用的激光射線波長一般在600nm到1000nm之間,遠遠低于傳統(tǒng)雷達所使用的波長。因此LiDAR在測量物體距離和表面形狀上可達到更高的精準度,一般可以達到厘米級。
LiDAR系統(tǒng)一般分為三個部分:第一是激光發(fā)射器,發(fā)射出波長為600nm到1000nm之間的激光射線;第二部分是掃描與光學部件,主要用于收集反射點距離與該點發(fā)生的時間和水平角度(Azimuth);第三個部分是感光部件,主要檢測返回光的強度。因此我們檢測到的每一個點都包括了空間坐標信息(x, y, z)以及光強度信息(i)。光強度與物體的光反射度(reflectivity)直接相關,所以根據(jù)檢測到的光強度也可以對檢測到的物體有初步判斷。
什么是點云?
無人車所使用的LiDAR并不是靜止不動的。在無人車行駛的過程中,LiDAR同時以一定的角速度勻速轉動,在這個過程中不斷地發(fā)出激光并收集反射點的信息,以便得到全方位的環(huán)境信息。LiDAR在收集反射點距離的過程中也會同時記錄下該點發(fā)生的時間和水平角度(Azimuth),并且每個激光發(fā)射器都有編號和固定的垂直角度,根據(jù)這些數(shù)據(jù)我們就可以計算出所有反射點的坐標。LiDAR每旋轉一周收集到的所有反射點坐標的集合就形成了點云(point cloud)。
![無人駕駛之光學雷達技術探究](/uploads/allimg/171010/2362486-1G0101FUU64.png)
圖2 點云的產生
如圖2所示,LiDAR通過激光反射可以測出和物體的距離distance,因為激光的垂直角度是固定的,記做a,這里我們可以直接求出z軸坐標為sin(a)*distance。由cos(a)*distance我們可以得到distance在xy平面的投影,記做xy_dist。LiDAR在記錄反射點距離的同時也會記錄下當前LiDAR轉動的水平角度b,根據(jù)簡單的集合轉換,可以得到該點的x軸坐標和y軸坐標分別為cos(b)*xy_dist和sin(b)*xy_dist。
LiDAR 在無人駕駛技術中的應用領域
接下來介紹光學雷達如何應用在無人駕駛技術中,特別是面向高精地圖的繪制、基于點云的定位以及障礙物檢測。
高清地圖的繪制
這里的高清地圖不同于我們日常用到的導航地圖。高清地圖是由眾多的點云拼接而成,主要用于無人車的精準定位。高清地圖的繪制也是通過LiDAR完成的。安裝LiDAR的地圖數(shù)據(jù)采集車在想要繪制高清地圖的路線上多次反復行駛并收集點云數(shù)據(jù)。后期經過人工標注,過濾一些點云圖中的錯誤信息,例如由路上行駛的汽車和行人反射所形成的點,然后再對多次收集到的點云進行對齊拼接形成最終的高清地圖。
基于點云的定位
首先介紹定位的重要性。很多人都有這樣的疑問:如果有了精準的GPS,不就知道了當前的位置,還需要定位嗎?其實不然。目前高精度的軍用差分GPS在靜態(tài)的時候確實可以在“理想”的環(huán)境下達到厘米級的精度。這里的“理想”環(huán)境是指大氣中沒有過多的懸浮介質而且測量時GPS有較強的接收信號。然而無人車是在復雜的動態(tài)環(huán)境中行駛,尤其在大城市中,由于各種高大建筑物的阻攔,GPS多路徑反射(Multi-Path)的問題會更加明顯。這樣得到的GPS定位信息很容易就有幾十厘米甚至幾米的誤差。對于在有限寬度上高速行駛的汽車來說,這樣的誤差很有可能導致交通事故。因此必須要有GPS之外的手段來增強無人車定位的精度。
上文提到過,LiDAR會在車輛行駛的過程中不斷收集點云來了解周圍的環(huán)境。我們可以很自然想到利用這些環(huán)境信息來定位。這里我們可以把這個問題用一個簡化的概率問題來表示:已知t0時刻的GPS信息,t0時刻的點云信息,以及t1時刻無人車可能所在的三個位置:P1、P2和P3(這里為了簡化問題,假設無人車會在這三個位置中的某一個)。求t1時刻車在這三點的概率。根據(jù)貝葉斯法則,無人車的定位問題可以簡化為如下概率公式:
![無人駕駛之光學雷達技術探究](/uploads/allimg/171010/2362486-1G0101F911L3.png)
右側第一項表示給定當前位置,觀測到點云信息的概率分布。其計算方式一般分局部估計和全局估計兩種。局部估計較簡單的做法就是通過當前時刻點云和上一時刻點云的匹配,借助幾何推導,可以估計出無人車在當前位置的可能性。全局估計就是利用當前時刻的點云和上面提到過的高清地圖做匹配,可以得到當前車相對地圖上某一位置的可能性。在實際中一般會兩種定位方法結合使用。右側第二項表示對當前位置預測的概率分布,這里可以簡單的用GPS給出的位置信息作為預測。通過計算P1、P2和P3這三個點的后驗概率,就可以估算出無人車在哪一個位置的可能性最高。通過對兩個概率分布的相乘,可以很大程度上提高無人車定位的準確度,如圖3所示。
無人駕駛技術簡介
無人駕駛技術是多個技術的集成,包括了傳感器、定位與深度學習、高精地圖、路徑規(guī)劃、障礙物檢測與規(guī)避、機械控制、系統(tǒng)集成與優(yōu)化、能耗與散熱管理等等。雖然現(xiàn)有的多種無人車在實現(xiàn)上有許多不同,但是在系統(tǒng)架構上都大同小異。圖1顯示了無人車的通用系統(tǒng)架構,系統(tǒng)的感知端(圖1左)由不同的傳感器組成,其中GPS用于定位,光學雷達(Light Detection And Ranging,簡稱 LiDAR)用于定位以及障礙物檢測,照相機用于基于深度學習的物體識別以及定位輔助。
![無人駕駛之光學雷達技術探究](/uploads/allimg/171010/2362486-1G0101FPBL.png)
圖1 無人車通用系統(tǒng)架構
在傳感器信息采集后,我們進入了感知階段,主要是定位與物體識別(圖1中)。在這個階段,我們可以用數(shù)學的方法,比如Kalman Filter與 Particle Filter等算法,對各種傳感器信息進行融合,得出當前最大幾率的位置。如果使用LiDAR為主要的定位傳感器,我們可以通過LiDAR掃描回來的信息跟已知的高精地圖做對比,得出當前的車輛位置。如果沒有地圖,我們甚至可以把當前的LiDAR掃描信息與之前的掃描信息用ICP算法做對比,推算出當前的車輛位置。在得出基于LiDAR的位置預測后,可以用數(shù)學方法與其它傳感器信息進行融合,推算出更精準的位置信息。
最后,我們進入了計劃與控制階段(圖1右)。在這個階段,我們根據(jù)位置信息以及識別出的圖像信息(如紅綠燈)實時調節(jié)車輛的行車計劃,并把行車計劃轉化成控制信號操控車輛。全局的路徑規(guī)劃可以用類似A-Star的算法實現(xiàn),本地的路徑規(guī)劃可以用DWA等算法實現(xiàn)。
光學雷達基礎知識
先來了解下光學雷達的工作原理,特別是產生點云的過程。
工作原理
光學雷達是一種光學遙感技術,它通過首先向目標物體發(fā)射一束激光,再根據(jù)接收-反射的時間間隔來確定目標物體的實際距離。然后根據(jù)距離及激光發(fā)射的角度,通過簡單的幾何變化可以推導出物體的位置信息。由于激光的傳播受外界影響小,LiDAR能夠檢測的距離一般可達100m以上。與傳統(tǒng)雷達使用無線電波相比較,LiDAR使用激光射線,商用LiDAR使用的激光射線波長一般在600nm到1000nm之間,遠遠低于傳統(tǒng)雷達所使用的波長。因此LiDAR在測量物體距離和表面形狀上可達到更高的精準度,一般可以達到厘米級。
LiDAR系統(tǒng)一般分為三個部分:第一是激光發(fā)射器,發(fā)射出波長為600nm到1000nm之間的激光射線;第二部分是掃描與光學部件,主要用于收集反射點距離與該點發(fā)生的時間和水平角度(Azimuth);第三個部分是感光部件,主要檢測返回光的強度。因此我們檢測到的每一個點都包括了空間坐標信息(x, y, z)以及光強度信息(i)。光強度與物體的光反射度(reflectivity)直接相關,所以根據(jù)檢測到的光強度也可以對檢測到的物體有初步判斷。
什么是點云?
無人車所使用的LiDAR并不是靜止不動的。在無人車行駛的過程中,LiDAR同時以一定的角速度勻速轉動,在這個過程中不斷地發(fā)出激光并收集反射點的信息,以便得到全方位的環(huán)境信息。LiDAR在收集反射點距離的過程中也會同時記錄下該點發(fā)生的時間和水平角度(Azimuth),并且每個激光發(fā)射器都有編號和固定的垂直角度,根據(jù)這些數(shù)據(jù)我們就可以計算出所有反射點的坐標。LiDAR每旋轉一周收集到的所有反射點坐標的集合就形成了點云(point cloud)。
![無人駕駛之光學雷達技術探究](/uploads/allimg/171010/2362486-1G0101FUU64.png)
圖2 點云的產生
如圖2所示,LiDAR通過激光反射可以測出和物體的距離distance,因為激光的垂直角度是固定的,記做a,這里我們可以直接求出z軸坐標為sin(a)*distance。由cos(a)*distance我們可以得到distance在xy平面的投影,記做xy_dist。LiDAR在記錄反射點距離的同時也會記錄下當前LiDAR轉動的水平角度b,根據(jù)簡單的集合轉換,可以得到該點的x軸坐標和y軸坐標分別為cos(b)*xy_dist和sin(b)*xy_dist。
LiDAR 在無人駕駛技術中的應用領域
接下來介紹光學雷達如何應用在無人駕駛技術中,特別是面向高精地圖的繪制、基于點云的定位以及障礙物檢測。
高清地圖的繪制
這里的高清地圖不同于我們日常用到的導航地圖。高清地圖是由眾多的點云拼接而成,主要用于無人車的精準定位。高清地圖的繪制也是通過LiDAR完成的。安裝LiDAR的地圖數(shù)據(jù)采集車在想要繪制高清地圖的路線上多次反復行駛并收集點云數(shù)據(jù)。后期經過人工標注,過濾一些點云圖中的錯誤信息,例如由路上行駛的汽車和行人反射所形成的點,然后再對多次收集到的點云進行對齊拼接形成最終的高清地圖。
基于點云的定位
首先介紹定位的重要性。很多人都有這樣的疑問:如果有了精準的GPS,不就知道了當前的位置,還需要定位嗎?其實不然。目前高精度的軍用差分GPS在靜態(tài)的時候確實可以在“理想”的環(huán)境下達到厘米級的精度。這里的“理想”環(huán)境是指大氣中沒有過多的懸浮介質而且測量時GPS有較強的接收信號。然而無人車是在復雜的動態(tài)環(huán)境中行駛,尤其在大城市中,由于各種高大建筑物的阻攔,GPS多路徑反射(Multi-Path)的問題會更加明顯。這樣得到的GPS定位信息很容易就有幾十厘米甚至幾米的誤差。對于在有限寬度上高速行駛的汽車來說,這樣的誤差很有可能導致交通事故。因此必須要有GPS之外的手段來增強無人車定位的精度。
上文提到過,LiDAR會在車輛行駛的過程中不斷收集點云來了解周圍的環(huán)境。我們可以很自然想到利用這些環(huán)境信息來定位。這里我們可以把這個問題用一個簡化的概率問題來表示:已知t0時刻的GPS信息,t0時刻的點云信息,以及t1時刻無人車可能所在的三個位置:P1、P2和P3(這里為了簡化問題,假設無人車會在這三個位置中的某一個)。求t1時刻車在這三點的概率。根據(jù)貝葉斯法則,無人車的定位問題可以簡化為如下概率公式:
![無人駕駛之光學雷達技術探究](/uploads/allimg/171010/2362486-1G0101F911L3.png)
右側第一項表示給定當前位置,觀測到點云信息的概率分布。其計算方式一般分局部估計和全局估計兩種。局部估計較簡單的做法就是通過當前時刻點云和上一時刻點云的匹配,借助幾何推導,可以估計出無人車在當前位置的可能性。全局估計就是利用當前時刻的點云和上面提到過的高清地圖做匹配,可以得到當前車相對地圖上某一位置的可能性。在實際中一般會兩種定位方法結合使用。右側第二項表示對當前位置預測的概率分布,這里可以簡單的用GPS給出的位置信息作為預測。通過計算P1、P2和P3這三個點的后驗概率,就可以估算出無人車在哪一個位置的可能性最高。通過對兩個概率分布的相乘,可以很大程度上提高無人車定位的準確度,如圖3所示。
下載該資料的人也在下載
下載該資料的人還在閱讀
更多 >
- 用于自動駕駛,無人駕駛領域的IMU六軸陀螺儀傳感器:M-G370
- 32.768K晶振X1A000141000300適用于無人駕駛汽車電子設備
- 無人駕駛汽車的路徑規(guī)劃與跟隨控制算法案例 3次下載
- 無人駕駛車輛開源分享
- 技術前沿:今日的創(chuàng)新如何改變無人駕駛的未來
- 無人駕駛汽車模型預測控制相關源代碼 29次下載
- 了解無人駕駛汽車原理
- 無人駕駛汽車的未來仿真如何
- 【2017中國IoT大會資料分享】無人駕駛 21次下載
- 無人駕駛汽車的來源及其四個階段技術特征的詳解 18次下載
- 介紹ADAS與無人駕駛的關系 10次下載
- 無人駕駛汽車之中激光雷達傳感的應用分析及對比 4次下載
- 無人駕駛核心公司競爭力排行 3次下載
- 無人駕駛車輛的雷達傳感 25次下載
- 無人駕駛技術及產業(yè)鏈精華集錦 46次下載
- 無人駕駛汽車的發(fā)展前景詳細說明 1.4w次閱讀
- 無人駕駛汽車有什么優(yōu)點和缺點 9.2w次閱讀
- 無人駕駛汽車的工作原理和特點詳細說明 2.5w次閱讀
- 激光雷達應用除了無人駕駛汽車,還有無人駕駛飛機 2555次閱讀
- 在無人駕駛車里玩游戲:VR+無人駕駛是怎么樣的體驗 1w次閱讀
- 無人駕駛技術主要有幾種技術組成 4.5w次閱讀
- 詳細無人駕駛汽車的關鍵技術——LiDAR 1.7w次閱讀
- 無人駕駛汽車技術_無人駕駛汽車關鍵技術_無人駕駛汽車技術原理 2.9w次閱讀
- 無人駕駛技術原理_無人駕駛技術的應用_無人駕駛技術的現(xiàn)狀及發(fā)展(前景) 4.6w次閱讀
- 無人駕駛技術哪家厲害_美國無人駕駛技術領先中國多少? 1.3w次閱讀
- 奔馳無人駕駛解決方案及奔馳f015無人駕駛方案 1.3w次閱讀
- 無人駕駛汽車技術實現(xiàn) 1.1w次閱讀
- 無人駕駛關鍵技術分析 2.2w次閱讀
- 無人駕駛技術中的激光雷達和攝像頭都干些什么? 1.1w次閱讀
- 無人駕駛如何前行? 784次閱讀
下載排行
本周
- 1TC358743XBG評估板參考手冊
- 1.36 MB | 330次下載 | 免費
- 2開關電源基礎知識
- 5.73 MB | 11次下載 | 免費
- 3100W短波放大電路圖
- 0.05 MB | 4次下載 | 3 積分
- 4嵌入式linux-聊天程序設計
- 0.60 MB | 3次下載 | 免費
- 5DIY動手組裝LED電子顯示屏
- 0.98 MB | 3次下載 | 免費
- 6基于FPGA的C8051F單片機開發(fā)板設計
- 0.70 MB | 2次下載 | 免費
- 751單片機PM2.5檢測系統(tǒng)程序
- 0.83 MB | 2次下載 | 免費
- 8基于51單片機的RGB調色燈程序仿真
- 0.86 MB | 2次下載 | 免費
本月
- 1OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費
- 2555集成電路應用800例(新編版)
- 0.00 MB | 33566次下載 | 免費
- 3接口電路圖大全
- 未知 | 30323次下載 | 免費
- 4開關電源設計實例指南
- 未知 | 21549次下載 | 免費
- 5電氣工程師手冊免費下載(新編第二版pdf電子書)
- 0.00 MB | 15349次下載 | 免費
- 6數(shù)字電路基礎pdf(下載)
- 未知 | 13750次下載 | 免費
- 7電子制作實例集錦 下載
- 未知 | 8113次下載 | 免費
- 8《LED驅動電路設計》 溫德爾著
- 0.00 MB | 6656次下載 | 免費
總榜
- 1matlab軟件下載入口
- 未知 | 935054次下載 | 免費
- 2protel99se軟件下載(可英文版轉中文版)
- 78.1 MB | 537797次下載 | 免費
- 3MATLAB 7.1 下載 (含軟件介紹)
- 未知 | 420027次下載 | 免費
- 4OrCAD10.5下載OrCAD10.5中文版軟件
- 0.00 MB | 234315次下載 | 免費
- 5Altium DXP2002下載入口
- 未知 | 233046次下載 | 免費
- 6電路仿真軟件multisim 10.0免費下載
- 340992 | 191186次下載 | 免費
- 7十天學會AVR單片機與C語言視頻教程 下載
- 158M | 183279次下載 | 免費
- 8proe5.0野火版下載(中文版免費下載)
- 未知 | 138040次下載 | 免費
評論